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ABSTRACT

Natural disasters like droughts have a huge socio-economic impact on society.

Despite being an important component of mitigation, the concept of vulnerabil-

ity in association with extreme events has not been explored much. This report

presents a systematic approach for the assessment of drought hazard and identifi-

cation of drought vulnerability indicators pertinent to the state of Texas. A novel

drought index known as Multivariate Drought Index (MDI) was used to simultane-

ously quantify multiple physical forms of drought. A composite risk assessment was

then carried out by considering both hazard and vulnerability components. The risk,

hazard, and vulnerability components were quantified using standardized indices like

Drought Hazard Index (DHI), Drought Vulnerability Index (DVI), and Drought Risk

Index (DRI). A suitable classification scheme was adopted for these indices to group

regions into classes ranging from low to high. Mapping of DHI, DVI, and DRI classes

led to the generation of risk, hazard and vulnerability maps for Texas. The report

emphasizes the importance of including vulnerability of the study area in the event

of drought while drafting planning measures. Ultimately, the study aims at bridging

the gaps existing in the current drought research, which even though substantial, still

fails to address some of the issues, and for developing a comprehensive framework

for better understanding of droughts in Texas which will help decision makers to

formulate a more effective adaptation and mitigation strategy in future.

Keywords: Hazard and Vulnerability maps, Multivariate Drought Index.
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1. INTRODUCTION

Drought is the leading cause of losses due to natural disasters in the state of

Texas. Due to the relative size and population, Texas is likely to suffer more from

drought related losses. There has been at least one serious drought in some part of the

state during every decade of the twentieth century. Recent climate change impact

studies also suggest an increase in the likelihood of occurrence of extreme events

like droughts due to a projected rise in temperature and reduction in precipitation

events as a result of anthropogenic emissions. A significant part of the economy

of Texas is agriculture and livestock, which increases the need for careful water

management and planning. The motivation for this study arises from the need

for drought research considering the wide varieties of sectors affected by drought,

and the fact that there is a higher probability of occurrence of longer, more severe

droughts in future. Thus, the need to clearly define and quantify multiple physical

forms of drought taking into consideration the socio-economic factors relevant to the

study area, and implementing subsequent changes in water resources planning and

management is of prime importance.

This report aims to address the following research problems:

1 Because of its widespread economical, societal, and ecological effects, multiple

drought types can simultaneously affect a region. Existing univariate drought

indices can only consider one drought type at a time. This necessitates the need

for a non–linear, multivariate measure that can quantify all the physical forms of

drought together.

2 There is a strong correlation between the effect of drought events and the coping

ability of the location affected by the event. The risk associated with drought

1



events, thus, depends on both its magnitude as well as the vulnerability of the

society towards droughts. The range of vulnerability towards droughts is very

wide since it depends on highly variable factors like social and economic resilience

towards disasters. In particular, rural areas lack the resources to prepare for and

respond to disasters due to its social and economic setup. A combined hazard and

vulnerability assessment which takes into account relevant socio–economic factors

is required for an accurate drought risk analysis instead of the usual frequency

analysis of drought properties alone.

The report is organized into following sections: section 2 discusses briefly the

study area, and section 3 explains data requirements for conducting this study. Sec-

tion 4 gives a systematic approach to be followed for multivariate drought hazard

and vulnerability assessment. This section also includes relevant literature review

and explains how the methodology followed in this report tries to fill the gaps in the

existing research. Section 5 shows the results of this study, and section 6 discusses

the obtained results and the conclusions drawn from the results.
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2. STUDY AREA

The study area considered is the state of Texas. Due to its size and geographic

location, it is affected by a wide variety of local and regional climatic influences.

Texas experiences five distinct climate types ranging from arid to sub–tropic humid

zones. The basic climate patterns in Texas are fairly simple: the annual mean

temperature increases from north to south, and annual mean precipitation increases

from west to east. In Sabine River basin in east Texas, the mean annual rainfall is

nearly 60 inches and annual evaporation is less than 70 inches, whereas in Rio–Grande

basin in west Texas, mean annual rainfall ranges from 8 to 20 inches and annual

evaporation is as much as 105 inches. These climate patterns strongly control the

flows of rivers and streams in Texas. Out of the 13 major river basins in Texas that

vary greatly in size, shape and stream patterns, east Texas rivers flow year around

and most of the west Texas streams flow only part of the year (Bureau of Economic

Geology, 1996). The vegetation and land use patterns also vary greatly, with forests

in the east, coastal plains in the south to the elevated plateaus and basins in the

north and west (Benke and Cushing, 2005). The land surface elevation follows a

decreasing trend from west to east, with arid climate zone covering higher elevation

areas, whereas most of the sub tropic humid zone and parts of subtropic semi humid

zone covers the low lying regions in Texas. Figure 3.1 shows the river basin map of

Texas and the precipitation (annual average in inches) gradient within the state.
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3. DATA

In this study, the authors employed a multivariate approach for quantifying

drought. A new drought index known as Multivariate Drought Index (MDI) was

used for deriving the drought characteristics. The hydroclimatic variables consid-

ered for calculating the Multivariate Drought Index (MDI) include: precipitation

(P), runoff (R), evapotranspiration (ET) and soil moisture (SM) for a time period

of 1950–2012 on a monthly time scale. Since long term observed records for these

variables is sparse, a macro-scale land surface model known as Variable Infiltration

Capacity (VIC) model was employed to simulate spatially and temporally continuous

R, ET, and SM monthly data for the state of Texas. A brief description of the model

processes and the concepts behind it is discussed in section 4. The model generates

the aforementioned variables for grids of 1/8o resolution. All the input files required

for running the model also had the specified resolution of 1/8o. The VIC model

overcomes limitations that exist due to the lack of long–term observed databases

in the case of soil moisture and evapotranspiration, and non–uniform distribution

of flow gaging stations which are mostly concentrated in eastern Texas and poorly

distributed in western Texas. A brief discussion on hydroclimatic variables used in

this study is now given.

3.1 Precipitation

Precipitation data was obtained from National Oceanic and Atmospheric Admin-

istration (NOAA) Cooperative Observer (Co–op) stations. The point data was then

gridded to the 1/8o resolution using the Synergraphic Mapping System (SYMAP)

algorithm (Shepard, 1984). This gridded precipitation data was then scaled to match

the long–term average of the parameter–elevation regressions on independent slopes

5



model (PRISM) precipitation climatology. This was done to ensure that the pre-

cipitation data used in the study is statistically adjusted to capture the influence

of local topography. The scale factor would be the ratio of mean monthly PRISM

precipitation for the period 1961–1990 to the unscaled mean monthly observed pre-

cipitation for the grid during 1961–1990. For each grid, there would be a different

scaling factor for each month.

3.2 Runoff

Monthly runoff values for grids of 1/8o resolution in Texas was obtained using

the VIC model. Using a stand-alone routing model (Lohmann et al., 1996, 1998)

as a post processing tool, stream flow values were generated at points of interest

by performing within-grid cell routing and then channel routing. After routing, the

simulated stream flow values were validated against the USGS hydro climatic data

network (HCDN) naturalized stream flow data.

3.3 Evapotranspiration

The total evapotranspiration over a grid cell computed by VIC model will have

three components: evaporation from the canopy layer (Ec, mm) of each vegetation

tile, transpiration (Et, mm) from each of the vegetation tiles, and evaporation from

the bare soil (E1, mm) (Liang et al. 1994). These individual factors will then be

weighted by the respective surface cover area fractions to give the total evapotran-

spiration for the respective grid cell. The model simulated evapotranspiration values

were validated against the actual evapotranspiration data obtained from the Texas

ET network and Texas Water Development Board (TWDB).
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3.4 Soil Moisture

Since the VIC model does not consider lateral flow between grids in the top

two soil layers, the movement of moisture can be characterized by one–dimensional

Richard’s equation. The soil moisture percentiles were simulated for the top 40 cm of

soil. The simulated soil moisture percentiles were validated using soil moisture data

obtained from soil climate analysis network (SCAN) stations maintained by Natural

Resources Conservation Service (NRCS), and climate reference network stations.

3.5 Vulnerability Indicators

A number of socio-economic factors relevant to the economy of Texas were consid-

ered to conduct the drought vulnerability assessment. The factors include population

density, municipal water demand, and non–municipal water demand (irrigation, live-

stock, industrial, mining and steam electric plant). Texas county level data for these

indicators were obtained from Texas Water Development Board (TWDB).

The methodology followed for calculation of MDI, drought hazard and vulnera-

bility assessment is explained in the following section.
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4. METHODOLOGY

The methodology followed for multivariate drought hazard and vulnerability as-

sessment for Texas is explained as simple steps in the following sub-sections.

(1) Simulation of input hydroclimatic variables required for drought quantification,

(2) Calculation of Multivariate Drought Index (MDI),

(3) Drought hazard assessment and calculation of Drought Hazard Index (DHI),

(4) Drought vulnerability assessment and calculation of Drought Vulnerability Index

(DVI), and

(5) Integrated risk assessment which includes hazard and vulnerability aspects.

4.1 Simulation of Hydroclimatic Variables

Since the availability of long-term, spatially continuous data of precipitation,

runoff, evapotranspiration, and soil moisture is a pre-requisite for drought analysis,

Variable Infiltration Capacity (VIC) model was used to simulate these variables.

4.1.1 Rationale for using VIC Model

This particular model was chosen, since it focuses on simulating hydrological

processes relevant to the water and energy balance over the land surface for studying

the effects of climate change on natural processes like droughts. Additionally, while

assessing the climate change impact on droughts and to understand the behavioral

properties of future droughts, there arises the need to simulate the drought indicating

variables by coupling VIC with General Circulation Model (GCM) data.
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Distinguishing characteristics of VIC model include the sub–grid variability in

land surface vegetation classes, sub–grid variability in the soil moisture storage ca-

pacity, and drainage from the lower soil moisture zone (base flow) as a nonlinear

recession. The VIC model has been well calibrated and applied in a number of large

river basins over the continental United States and the globe, and has participated

in the Intercomparison of Land Surface Parameterization Schemes (PILPS) project

and the North American Land Data Assimilation System (NLDAS), where it has

performed well relative to other schemes and to available observations (Bowling et

al. 2003a, 2003b, Lohmann et al., 1998). The VIC model has been widely used,

particularly for runoff and soil moisture simulation. Abdulla et al. (1996), Nijssen

et al. (1997), Lohmann et al. (1998), and Nijssen et al. (2001) used VIC primarily

for runoff simulation. Sheffield et al. (2004), Andreadis and Lettenmaeir (2006),

Sheffield and Wood (2008), and Shukla and Wood (2008) demonstrated the use of

VIC simulated soil moisture and runoff in the context of droughts.

4.1.2 Model Description

The VIC–3L is a large scale land surface model and is used for simulating

land–atmosphere fluxes by solving water and energy balance at a daily or sub–daily

temporal scale (Liang et al., 1994). The land surface is essentially divided into grids

of specified resolution. Each of these cells is simulated independent of each other.

Land surface is divided into different vegetation covers in such a way that multiple

vegetation classes can exist within a cell. The soil moisture distribution, infiltration,

drainage between soil layers, surface runoff, and subsurface runoff are all calculated

for each land cover tile at each time step. Then for each grid cell, the total heat fluxes

(latent heat, sensible heat, and ground heat), effective surface temperature, and the

total surface and subsurface runoff are obtained by summing over all the land cover
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tiles weighted by fractional coverage. It should thus be noted that the VIC model

does not account for the interflow between the grids. Typically in VIC–3L model,

the soil is partitioned into three layers vertically, with variable soil depths and the

main soil parameters include hydraulic conductivity, thickness of each soil layer, soil

moisture diffusion parameters, initial soil moisture, bulk density and particle den-

sity. The vegetation parameters considered by the model include root depth, root

fraction, Leaf Area Index (LAI), stomatal resistance, albedo, etc.

4.1.3 Model Processes

The water balance in the VIC model follows the continuous equation for each

time-step:

∂S

∂t
= P − E −R (4.1)

where
∂S

∂t
, P , E, and R, are the changes in water storage, precipitation, evapotran-

spiration, and runoff, respectively. The major processes simulated by VIC and the

concepts behind them are briefly discussed in the sections below.

4.1.3.1 Evapotranspiration

The VIC model considers three types of evaporation: evaporation from the canopy

layer of each vegetation tile (Ec), transpiration from each vegetation tile (Et), and

evaporation from the bare soil (E1) (Liang et al. 1994). Total evapotranspiration

over a grid cell is computed as the sum of the above components, weighted by the re-

spective surface cover area fractions.The formulation of the total evapotranspiration

is:

E =
N∑
n=1

Cn.(Ec,n + Et,n) + CN+1.E1 (4.2)

where Cn is the vegetation fractional coverage for the nth vegetation tile, CN+1

10



is the bare soil fraction, and
N∑
n=1

Cn = 1.

4.1.3.2 Runoff

The VIC model uses the variable infiltration curve (Zhao et al., 1980) to account

for the spatial heterogeneity of runoff generation. It assumes that surface runoff

from the upper two soil layers is generated by those areas for which precipitation,

when added to soil moisture storage at the end of the previous time step, exceeds

the storage capacity of the soil. The formulation of subsurface runoff follows the

Arno model conceptualization (Franchini and Pacciani, 1991). The soil moisture

and runoff algorithms for the VIC-3L is explained with details in Liang et al. (1994).

Total runoff Q is given by:

Q =
N+1∑
n=1

Cn.(Qd,n +Qb,n) (4.3)

where Qd,n, Qb,n, and Cn, are the direct runoff (surface runoff), base flow (subsurface

runoff), and the vegetation fractional coverage for the nth vegetation tile, respectively.

4.1.3.3 Soil Moisture Content

The VIC model assumes that there is no lateral flow in the top two soil layers;

therefore, the movement of moisture can be characterized by the one–dimensional

Richards equation:

∂θ

∂t
=
∂D(θ).∂θ

∂z

∂z
+
∂K(θ)

∂z
(4.4)

where θ is the soil moisture content, D(θ) is the soil water diffusivity, K(θ) is the

hydraulic conductivity, and z is the soil depth.
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4.1.4 Routing Model

Since the grid–based VIC model simulates the time series of runoff only for each

grid cell, a stand–alone routing model (Lohmann. et al., 1996, 1998a) is employed to

transport grid cell surface runoff and base flow to the outlet of that grid cell and then

into the river system. In this routing scheme, the surface runoff simulated by VIC

in each grid cell is transported to the outlet of the grid cell using a unit hydrograph

approach. Then, by assuming that all runoff exits a cell in a single flow direction,

it is routed through the channel using a linearized Saint–Venant equation. In the

routing model, water is never allowed to flow from the channel back into the grid

cell. Once it reaches the channel, it is no longer part of the water budget scheme.

Because of the absence of long–term observed data for evaporation, soil moisture

and runoff for each grid, to evaluate the model simulation results, the routing model

will be used as a post–processing tool to produce stream flow at locations for which

observed records are available for comparison.

4.1.5 Data Requirements for the Model

VIC requires high quality daily gridded meteorological forcing data as input. Pre-

cipitation (mm), maximum and minimum temperature (oC), and wind speed (m/s)

constitute the major input forcing data. In addition to this, the model also requires

soil and vegetation data as input. The model was run at its default resolution of

1/8o (Salathe, 2003). Hence, all input files, including forcing files, soil and vegetation

parameter files, also have this resolution. This resolution was chosen by also taking

into consideration the availability of gridded daily forcing data which was needed to

drive the model at 1/8o (Maurer et al., 2002).

The time period of data used was 1949–2012. The year 1949–1950 was considered

as the spin up year for the model. The daily precipitation and temperature data were

12



obtained from National Oceanic and Atmospheric Administration (NOAA) Cooper-

ative Observer (Co–op) stations and National Climate Data Center (NCDC), respec-

tively. Synergraphic Mapping System (SYMAP) algorithm introduced by Shepard

(1984) was used to grid the forcing data to match model resolution. The gridded

forcing data were subsequently rescaled to match long term averages of Parameter

Elevation Regressions on Independent Slopes Model (PRISM) climate data.

The soil characteristics which will not be considered for calibration were taken

from gridded 1/8o datasets developed as part of the Land Data Assimilation System

(LDAS) project (Mitchell et al. 1999). Within the conterminous United States, these

datasets are based on the 1–km resolution dataset produced by the Pennsylvania

State University (Miller and White 1998). Soil texture in the LDAS dataset is

divided into 16 classes for each of the layers, inferring specific soil characteristics

(e.g., field capacity, wilting point, saturated hydraulic conductivity) based on the

work of Cosby et al. (1984), Rawls et al. (1993), and Reynolds et al. (2000). These

LDAS datasets were used to specify the relevant soil parameters required by the

VIC model directly. For the remaining soil characteristics (e.g., soil quartz content),

values were specified using the soil textures from the 1–km database, which were

then indexed to published parameter values [the primary source was Rawls et al.

(1993)], and aggregated to the 1/8o model resolution.

Vegetation parameters needed were also obtained from LDAS. Land cover char-

acterization was based on the University of Maryland global vegetation classification

described by Hansen et al. (2000), which has a spatial resolution of 1 km, and a

total of 14 different land cover classes. From these global data, the land cover types

present in each 1/8o grid cell in the model domain and the proportion of the grid

cell occupied by each type were identified (Maurer et al., 2001). The leaf area index

(LAI) needed was derived from the gridded (1/4o) monthly global LAI database of

13



Myneni et al. (1997), which is inverted using the Hansen et al. (2000) land cover

classification to derive monthly mean LAIs for each vegetation class for each grid

cell.

The model results need to be validated and for this purpose, routing model was

used as a post processing tool to produce stream flow at the points of interest.

Several United States Geological Survey (USGS) stream gages which come under

the Hydro–Climatic Data Network (HCDN) were considered for model validation.

The data needed for the routing scheme include a fraction file, flow direction file,

Xmask file, flow velocity and diffusion files, and unit hydrograph file. ArcMap was

used for the preparation of these files. The required Digital Elevation Model (DEM)

files were obtained from the USGS hydro 1–k datasets.

Figure 4.1 shows a schematic diagram depicting the working of the VIC model.
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The next step is calculation of MDI which is a combination of P, R, ET, and SM.

4.2 Integrated drought quantification using Multivariate Drought Index

(MDI)

4.2.1 Rationale for development of MDI

Droughts are classified into four categories: meteorological or climatological, agri-

cultural, hydrological, and socioeconomic (The American Meteorological Society,

1997; Mishra and Singh, 2010). The relationship between hydroclimatic variables

and different types of droughts is complex and hence it is difficult to develop an

accurate index to quantify and compare droughts.

Currently, there exist a number of drought indices that are used to represent

different types of droughts. Many of the commonly used drought indices like Palmer

Drought Severity Index (PDSI; Palmer, 1956), Standardised Precipitation Index

(SPI; McKee, 1993), Standardized Runoff Index (SRI; Shukla and Wood, 2008),

etc. has many limitations. PDSI, in particular, has several limitations like lack of

physical meaning, slowness in detecting the onset of drought events, unclear tem-

poral scale and problems with Thornthwaite’s method used for calculation of PDSI.

SPI and other standardized indices similar to it like SRI, Standardized Stream Flow

Index (SSFI; Modarres, 2007), Crop Moisture Index (CMI; Palmer, 1968) for agricul-

tural drought, Vegetation Condition Index (VCI; Kogan, 1995), Climate prediction

center (CPC) Soil Moisture Index (SMI; Huang et al., 1996), and Standardized Pre-

cipitation Evapotranspiration Index (SPEI; Serrano et al., 2010), etc. considers one

specific physical form of drought: hydrological, meteorological, or agricultural. This

might not be adequate to get a comprehensive idea of the drought condition, since

it is dependent on multiple variables. Hence, in general it can be concluded that

the drought status indicated by one drought index might not be consistent with the
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findings obtained while using a different drought index.

To overcome these limitations, a group of indices that consider multiple variables

to represent drought were developed. The drought monitor developed by Svoboda

et al. (2002) considers an Objective Blend of Drought Indicators (OBDI) which is

the linear weighted average of several drought indices. Aggregated Drought Index

(ADI; Keyantash and Dracup, 2004) comprehensively considers all physical forms of

drought through variables like precipitation, stream flow, evapotranspiration, reser-

voir storage, soil moisture content and snow water content. ADI aggregates all

these variables into a single time series through principal component analysis (PCA).

However, the use of PCA has several limitations like linearity assumption in data

transformation, and the assumption that most information is contained in those di-

rections where input data variance is maximum. These assumptions however need

not be always met in reality. Recently, bivariate drought indices have been derived

using copulas to quantify the joint behavior of drought types. Kao and Govindaraju

(2010) introduced a Joint Drought Index (JDI) using copula for obtaining the joint

probabilities while considering precipitation and stream flow. Hao and Agakouchak

(2013) introduced Multivariate Standardized Drought Index (MSDI) which uses cop-

ula to form joint probabilities of precipitation and soil moisture content. The use of

copula for multivariate analysis is, no doubt, highly effective. However, for higher

dimensional cases (i.e. more than three variables), this method will not be a feasible

choice due to the lack of flexibility in modeling the dependence structure.

Feature extraction technique is an effective approach to aggregate the various

drought types into a single index. In particular, the kernel based methods, like

the kernel principal component analysis (KPCA) and kernel partial least squares

(KPLS), have attracted a lot of attention, particularly in the last decade as an ef-

fective non–linear approach for dimensionality reduction. These methods target at
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finding projections that maximize the variance of input data in the feature space.

However, the method assumes that the maximum information that can be obtained

from the input data is oriented along the direction of maximum variance. In this

study, Multivariate Drought Index (MDI), a new index formulated by Rajsekhar et

al. (2014) is used for comprehensive drought assessment. MDI uses a kernel entropy

component analysis (KECA) for extracting a drought index named as multivariate

drought index (MDI) from the set of input variables representing the various physical

forms of drought. We consider the variables: precipitation (P), runoff (R), evapotran-

spiration (ET), and soil moisture (SM), thus accounting for all the major elements

in the water balance model. The method is essentially a novel feature extraction

technique that combines the concept of entropy and KPCA. KECA is superior to

KPCA since it has been proved that entropy is a much better measure of information

than variance (Dionisio et al., 2007). Entropy is related to the higher order moments

of a distribution, and thus, unlike the variance, it can offer a better characterization

of the input data, since it uses more information from the probability distribution

(Ebrahimi et al.,1999).

The advantages of this approach can be summarized as: (1) It does not make the

linearity assumption; (2) final multivariate index is obtained in such a way that it

preserves the entropy of the input data, which means it tries to preserve the maximum

amount of information of the input data; and (3) unlike KPCA, it does not make

the assumption that the maximum information from the input data is oriented along

the direction of maximum variance. KPCA essentially preserves only the second

order statistics of data set, whereas KECA preserves the higher order statistics also

through the use of entropy.

The following subsection explains in detail the formulation of MDI.
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4.2.2 Mathematical Formulation of MDI

The mathematical formulation of MDI follows two steps:

(1) The input hydroclimatic variables used for the calculation of MDI were trans-

formed into standard normal variates.

(2) The information theory based feature extraction technique called KECA was

then utilized to extract the MDI time series that maximally preserved the entropy

of the standardized input dataset.

The following sections discuss in detail the steps involved in the calculation of MDI.

4.2.2.1 Standardization of Input Variables

The primary step involved in the mathematical formulation of MDI is the trans-

formation of each input variable into an index that is a standard normal variate.

The procedure followed for the calculation of these standardized indices consists of

the identification of a suitable probability distribution fitted to the monthly time

series of the variable under consideration, followed by the construction of cumulative

density function which is then transformed to standard normal distribution function.

Having approximated to the normal CDF, the respective standardized index for

the time series of the given variable was obtained as the standard normal variate

with zero mean and unit standard deviation.

Since both precipitation and evapotranspiration were considered as input vari-

ables, a combined standardized drought index popularly known as standardized pre-

cipitation evapotranspiration index (SPEI) developed by Vincente–Serrano et al.

(2010) was used, instead of calculating separate standardized indices for precipita-

tion and evapotranspiration. A differential timeseries D = P - ET formed the basis

of SPEI. The D timeseries was fitted to a three parameter log–logistic distribution
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to get the cumulative probabilities (Vincente–Serrano et al., 2010). These cumula-

tive probabilities were converted to standard normal variates by following the steps

outlined above in order to obtain SPEI. Likewise, the log–normal distribution was

used to fit the runoff time series and obtain the CDFs which were subsequently con-

verted to standard normal CDFs and a Standard Runoff Index (SRI) was obtained

(Shukla and Wood, 2008; Rajsekhar et al., 2013). A non–parametric approach was

used to obtain the empirical probabilities of soil moisture data using the Gringorten

plotting position. These empirical probabilities were then transformed to standard

normal CDF and a standardized Soil Moisture Index (SMI) was obtained (Hao and

Aghakouchak, 2013).

Thus, the input dataset used for formulating MDI consisted of SPEI, SRI and

SMI. Note that all of these indices have multiscalar property like SPI. This property

was acquired by MDI as well. Thus, an n–month MDI was calculated by considering

the n–month totals of each input drought variable.

4.2.3 Spectral Methods for Data Transformation

The approach used for aggregating the input data set into MDI was through

a data transformation technique that combined the concept of entropy with kernel

principal component analysis. Data transformation techniques are basically used to

convert high dimension data into an alternative lower dimensional representation that

preserves the structure of the original data. Several data transformation method-

ologies have been reported in the literature. Spectral methods are the most popular

technique used for this purpose, and it is based on the eigen values and eigen vectors

of spatially constructed data matrices. Saul et al. (2005) give a detailed review of

the spectral methods for data transformation. This subsection discusses Principal

Component Analysis (PCA) and its extensions.
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Principal Component Analysis (PCA) is a linear dimensionality reduction tech-

nique. PCA aims at developing a lower dimensional data representation of the orig-

inal data in such a way that the transformed data preserves the covariance struc-

ture. The input patterns, X = x1 , ...xn ; xiεR
d are projected onto an m-dimensional

subspace that has maximum variance. The output obtained through PCA are the

coordinates of the input data in this subspace, using the directions specified by the

top m eigen vectors as the principal axes. The procedure for computation of eigen

vectors is explained below.

For matrix X that contains an n–dimensional input data, there exists an eigen

vector Y corresponding to each eigen value λ such that:

(X − λIn)Y = 0 (4.5)

The eigen values of the covariance matrix represent the variance in the eigen–directions

of data space. Hence, the eigen vector corresponding to the largest eigen value is the

direction in which the data is most stretched out. The second direction is orthogo-

nal to it and picks the direction of the largest variance in that orthogonal subspace,

and so on and so forth. Thus, the number of significant eigen values determines the

dimensionality of the subspace that explains most of the original data’s variance.

As an advancement from linear methods, a number of nonlinear spectral data

transformation methods like kernel PCA have been proposed (Scholkopf et al., 1999).

Kernel PCA (KPCA) performs like traditional PCA in a so called kernel feature

space which is nonlinearly related to the input space. Suppose we are given a

real–valued function K : RdX Rd → R with the property that there exists a map

φ : Rd → H into a dot product feature space H such that for all x, x ′εRd, we have

φ(x ).φ(x ′) = K (x , x ′). The kernel function K (x , x ′) can be viewed as a nonlinear
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similarity measure (Scholkopf and Smola, 2002). The covariance matrix in this case

can be given as:

C =
1

n

n∑
i=1

φ(xi)φ(xTi ) (4.6)

The top m eigenvectors of C are denoted as (vα)mα=1 and their respective eigen-

values as (λα)mα=1. The kernel matrix K may be eigendecomposed as K = EDET ,

where D is the diagonal matrix storing all the eigenvalues λ1 , ..., λn and E is a ma-

trix with the corresponding eigenvectors v1 , ..., vn as columns (Williams, 2002). The

lower dimensional outputs of KPCA are thus given by φpca =
√

DmEm
T =
√
λα.vα

T .

Dm stores the top m eigenvalues of K , and E stores the corresponding eigenvectors

as columns. Using the fact that the equivalence between PCA and another linear

data transformation method called Metric multidimensional scaling (MDS; Borg and

Groenen, 2005) holds for KPCA as well (Williams, 2002), the KPCA outputs can

be seen as solution to a minimization problem which is analogous to the mathe-

matical formulation for MDS. The minimization problem for KPCA outputs can be

formulated as:

φpca = D
1
2
mET

m : min
λ1 ,v1 ....,λn ,vn

I T (K −Kpca)2 I (4.7)

where Kpca = EmDmEm
T and I is an (n × 1 ) matrix of ones. KPCA shares all

the statistical and mathematical properties of PCA with the modification that they

become valid over the feature space H rather than Rd.

To better understand the procedure involved in dimensionality reduction using

KPCA, a simple step–step scheme is given below:

1 Consider an n–dimensional data matrix X = x1 , ...xn .

2 Subtract the mean from all data points.

3 Choose an appropriate kernel k(., .) from the various available kernels like polyno-
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mial, Gaussian, tanh kernel, etc.

4 Form an n×n Gram matrix (inner–product matrix), K, which is given by the dot

product: [K(x, x
′
)].

5 Form the modified Gram matrix:

K̄ = (I − 1n×n
n

)TK(I − 1n×n
n

) (4.8)

where 1n×n is an n× n matrix with all entries equal to 1.

6 Diagonalize K̄ to get its eigen values λn and eigen vectors vn.

7 Normalize the eigen vectors as
vn√
λn

8 Retain the top m eigen vectors corresponding to the largest eigen values so that

the desired variance is captured.

9 Project the data points on the eigen vectors:

φ = vT (I − 1n×n
n

)(


k(x1, x)

.

k(xn, x)

−K 1n×1
n

) (4.9)

where 1n×1 is an n×1 matrix with all entries equal to one. Now, use the projections

instead of data points.

Note, however, that the KPCA transformation is based on the selection of eigen-

vectors solely on the basis of size of eigenvalues, and hence it might end up choosing

uninformative eigenvectors from an entropy perspective. To overcome this issue, a

new data transformation method called kernel entropy component analysis has been

employed in this study, which is explained below.

23



4.2.3.1 Kernel Entropy Component Analysis (KECA)

Recently, it has been shown that there is a close connection between the kernel

methods and information theory (Jenssen et al., 2005; 2006). This is a new spectral

data transformation method and is fundamentally different from other spectral meth-

ods because the data transformation in this method is based on the Renyi entropy

of the input space dataset. Jenssen (2010) shows that the Renyi entropy estimator

of the input space can be expressed in terms of projections onto the principal axes

which are the KPCA axes in kernel feature space. In KECA, the dimensionality

reduction is brought about by projecting onto those KPCA axes that contribute to

the entropy estimate of the input data set. In general, it need not correspond to

the top eigenvalues and eigenvectors of the kernel matrix, as is the case with the

KPCA method. Hence, KECA may produce strikingly different results compared to

KPCA. The transformed data produced through KECA transformation shows a dis-

tinct angular structure, meaning that even nonlinearly related input datasets would

be distributed in different angular directions with respect to the origin of the feature

space, thus revealing more information about the input dataset.

Entropy, first introduced in the field of information theory by Shannon (1948), is

defined for a random variable X as (Lathi,1968):

H(X ) = −
∫
i

P(xi)log2P(xi)dx (4.10)

where P(xi)’s are the probabilities associated with the events X = xi ’s. H (X ) is the

marginal entropy of X which measures the information contained in X . Extensions

to Shannon’s entropy which result in alternate forms of information measures can be

found in the literature. The Renyi entropy is a more generalized and flexible form
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of Shannon entropy. A general form for the Renyi entropy can be given as:

H (X ) =
1

(1 − q)
.log

∫
i

P(xi)
qdx (4.11)

The Renyi entropy becomes Shannon entropy as q → 1 . In this study, we focus

on Renyi’s quadratic entropy wherein q → 2 . This is the most heavily used form of

Renyi entropy. The Renyi quadratic entropy is given as:

H (X ) = −log

∫
i

P2 (xi)dx (4.12)

To estimate the Renyi entropy, we concentrate on the quantity V (p) =
∫
i
P2 (xi)dx ,

which can alternately be formulated as expectation w.r.t P(x ), and can be calculated

using the Parzen window. The Parzen window is a non–parametric density estima-

tion method. Beirlant et al. (1997) introduced this non parametric plug–in entropy

estimator. It is known for its consistency and efficiency, and provides a link between

information theory and kernel learning. Using the Parzen window, the probability

density estimation is given as:

P̂(x ) =
1

n

∑
xiεRd

Kσ(x − xi) (4.13)

where Kσ(x , xi) is the Parzen window or kernel centered at xi , and σ is the kernel size.

Kσ is a Mercer kernel which is continuous, symmetric and positive semi definite. V (p)

can then be invoked using the sample mean approximation of expectation operator
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as (Jenssen, 2010):

V̂ (p) =
1

n

∑
xiεRd

P̂(xi)

=
1

n

∑
xiεRd

1

n

∑
xiεRd

Kσ(x − xi)

=
1

n2
I TKI

(4.14)

where I is an (n × 1 ) matrix of ones, and K is the kernel matrix. The kernel matrix

K can be eigendecomposed and eq. 4.14 can thus be rewritten as (Jenssen, 2010):

V̂ (p) =
1

n2

n∑
i=1

(
√
λiv

T
i I )2 (4.15)

The ψ term that denotes (
√
λiv

T
i I )2 contributes to the total entropy of input

data. Certain eigenvectors contribute more towards the entropy than others. Eq.

4.15 reveals that the Renyi entropy estimator is composed of projections onto all the

KPCA axes, wherein the projection onto the ith principal axis is given by (
√
λiv

T
i ).

Only a principal axis with λi 6= 0 ; vT
i I 6= 0 contributes to the entropy estimate.

Hence, a large eigenvalue λi simply does not guarantee that the principal axis con-

tributes to the entropy estimate at all. The KECA transformation for an n dimen-

sional data into a k dimensional subset is done by projecting the feature space φ onto

a subspace φk spanned by the k kernel PCA axes that contribute most to the entropy

estimate of the input data. Mathematically, this transformation can be denoted by:

φeca = φT
k φ = D

1
2
k ET

k (4.16)
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where Dk is the diagonal matrix containing the eigenvalues λ1 , λ2 , ...λk that con-

tribute the most towards the entropy of the input dataset, and Ek contains the

corresponding eigenvectors v1 , v2 , ...vk as columns. Hence, analogous to eq. 4.7, the

KECA outputs could be formulated as the solution to a minimization problem:

φeca = D
1
2
k ET

k : min
λ1,v1....,λn,vn

1

n2
IT (K −Keca)I (4.17)

where Keca = EkDkET
k . The entropy estimate of the subspace φeca is given as:

ˆVk(p) =
1

n2
I TKecaI (4.18)

The MDI time series obtained for each grid cell within Texas was then used for

calculating the drought properties.

4.2.4 Derivation of Drought Properties Using Theory of Runs

A drought event is characterized by severity, duration and areal extent (Mishra

and Singh, 2010). For any drought event, the cumulative deficit of the variable of

interest during the drought event is defined as drought severity. Drought duration

is the time between the onset and the end of a drought event. Drought magnitude

is the average deficit per unit duration. In this study, drought duration and severity

were considered.

The theory of runs was used for deriving drought characteristics from the runoff

time series. This method has been widely used in the field of hydrology. Yevjevich et

al. (1967), Rodriguez-Iturbe (1969), Saldarriaga and Yevjevich (1970), Millan and

Yevjevich (1971), Guerrero–Salazar and Yevjevich (1975), and Sen (1976, 1977) are

among the first few who applied the runs theory in hydrology. A run is defined as

a portion of time series of drought variable Xt in which all values are either above
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or below a threshold level X0. Accordingly, it can be called a positive or a negative

run. The threshold level may be constant or it may vary with time. Thus, the

drought characteristics essentially depend upon the threshold chosen (Mishra and

Singh, 2010). Figure 4.2 depicts the properties for a drought event using the theory

of runs.

Figure 4.2: Drought Characteristics Using Theory of Runs

The drought classification for MDI values is given in Table 4.1. MDI followed the

same drought classification as that of its constituent indices, like SPI, SRI, etc.
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Table 4.1: MDI Drought Classification

MDI value Classification
2.0 or more Extremely wet
1.5 to 1.99 Very wet
1.0 to 1.49 Moderately wet

-0.99 to 0.99 Near normal to mildly dry
-1.0 to -1.49 Moderately dry
-1.5 to -1.99 Severely dry
-2.0 or less Extremely dry

Following the classification table for MDI values, a threshold of -0.99 was chosen.

Any value of MDI below this was considered as a drought event. The derived drought

properties based on MDI was then used for an integrated risk assessment.

4.3 Integrated Hazard and Vulnerability Assessment

Although many studies have been carried out on drought risk assessment, only a

few of them considered incorporating both hazard and vulnerability factors together

(Wilhemi and Wilhite, 2002; Shahid and Behrawan, 2008; Bin et al., 2011; Kim et al.,

2013; Zhang et al., 2014). While properties like severity, duration, frequency and spa-

tial extent of the drought are important, one should also consider the socioeconomic

ability of the region to cope with the drought event (Shahid and Behrawan, 2008).

A comprehensive risk analysis, thus, bridges the gap between impact assessment and

policy formulation by directing attention to underlying causes of vulnerability rather

than to its result, i.e. the negative impacts which follow triggering events, such as

a drought (Ribot et al. 1996). Some of the studies that incorporate socioeconomic

elements while assessing droughts are listed below.

Knutson et al. (1998) introduced a step–by–step process for identifying actions

that can be taken to reduce potential drought–related impact, taking into consid-

eration the underlying environmental, economic, and social causes of the impacts.

29



Wilhelmi and Wilhite (2002) conducted a GIS based agricultural drought vulner-

ability study considering key factors like soil and land use, irrigated cropland, and

agroclimatic data. Fontaine and Steinmann (2009) integrated stakeholder data in the

vulnerability assessment method. Shahid and Behrawan (2008) introduced a system-

atic three step methodology for meteorological drought risk assessment framework

that incorporates hazard and vulnerability. Bin et al. (2011), Kim et al. (2013),

and Zhang et al. (2014) are some of the application based studies which followed

the framework introduced by Shahid and Behrawan (2008). Cheng and Ping–Tao

(2010), Yuan et al. (2013), and Wu et al.(2011) improved upon the weighting scheme

for vulnerability assessment through methods like Analytic Hierarchy Process (AHP)

and fuzzy clustering algorithms.

In most of the above mentioned studies, the focus was either on agricultural

drought or meteorological drought. Also, only drought severity was considered for

hazard assessment. In this study, an integrated approach was followed, which si-

multaneously considers several drought forms like meteorological, agricultural, and

hydrological droughts. The hazard and vulnerability assessment was carried out by

considering severity and duration together, so as to capture the joint behavior of

droughts.

Risk assessment of drought, thus entails three components: (Singh, 2013): (1)

Hazard assessment which is defined as the product of magnitude and the frequency

of the event corresponding to that magnitude, (2) Vulnerability assessment which

is a measurement of the sensitivity of the exposed system, and (3) Risk assessment

incorporating both hazard and vulnerability factors, which is defined by the relation-

ship

Risk = Hazard× V ulnerability.
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4.3.1 Hazard Assessment using Drought Hazard Index (DHI)

Hazard can be defined as the probability of occurrence of a potentially damag-

ing phenomenon. It is measured as the product of magnitude and the associated

frequency of occurrence of event, and is an indicator of the potential threat.

The drought hazard assessment was carried out using the following steps:

(1) The drought properties of severity and duration were calculated using MDI, as

explained in previous section. Monthly MDI values were calculated for the time

period 1950–2012 for each 1/80 grid within Texas. The classification of drought

into mild, moderate, and severe based on the MDI values is given in Table 4.1.

(2) The joint behavior of drought severity and duration was modeled using a copula.

The steps involved in deriving the joint probability of severity and duration using

copula is briefly explained below:

(a) Fit suitable distributions to severity and duration data. Standard goodness

of fit statistics may be chosen to decide on the best fitting marginal distri-

butions for severity and duration, respectively. In drought analysis, the two

most commonly used continuous distributions are exponential and gamma

for fitting the drought duration (Zelenhastic and Salvai, 1987) and drought

severity (Shiau, 2006), respectively. This can be used as a simple guide while

choosing appropriate marginal distributions for severity and duration.

(b) Build joint distributions for drought severity and duration using an appropri-

ate copula from among the Archimedean, Elliptical, and Extreme value cop-

ula families. Copulas are useful for building joint distributions from marginal

distributions belonging to different families. It can be explained using a sim-

ple mathematical expression, as shown below. The probability of occurrence
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of a drought event having the given severity and duration found from the

joint distribution is given as:

FS ,D(s , d) = C [FS (s)FD(d)] (4.19)

where FD(d) is the CDF of drought duration, FS (s) is the CDF of drought

severity, and FS ,D(s , d) is the joint CDF of drought severity and duration

which was derived using the unique copula, C. Visualization of observed

and simulated data through scatter plots were used as a guide for choosing

the appropriate copula. Use of standard goodness of fit statistics may also

be employed for choice of best fit copula, if necessary.

(3) The joint probability, p, was then standardized by taking an inverse normal, thus

obtaining Standardized Joint Probability of occurrence (SJP):

SJP = ψ−1(p) (4.20)

where ψ is the standard normal distribution function.

(4) A weighting system based on the cumulative distribution function of SJP is given

in Table 4.2, and the classification followed by SJP was the same as all other

standard drought indices (McKee et al., 1993). Based on this, the ”mild” (M)

classification will have an SJP value ranging from 0 to -0.99 and was given a

weight of 1; the ”moderate” (MO) category which ranges from -1 to -1.49 was

given a weight of 2; the ”severe” (S) category which ranges from -1.5 to -1.99

was weighted as 3; and the ”extreme” (E) category that ranges from -2 and was

weighted as 4.
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Table 4.2: Weighting Scheme for Hazard Assessment

SJP value Classification Weights assigned
-0.99 to 0.99 Near normal or mild (M) 1
-1.0 to -1.49 Moderate (MO) 2
-1.5 to -1.99 Severe (S) 3
-2.0 or less Extreme (E) 4

(5) After fixing the weights for various categories, each weighted category was further

split into four ratings ranging from 1 to 4. This was done using Jenks natural

break optimization which divided the actual occurrence probabilities calculated

for all the grids that lie within the same planning region identified by Rajsekhar

et al. (2012) into four ratings. The Jenks method seeks to minimize each class’s

average deviation from the class mean, while maximizing each class’s deviation

from other groups. Hence, the method seeks to minimize within–class variance

and maximize variance between classes. Figure 4.3 shows the weight and rating

system developed for calculation of an Aggregrated Drought Hazard Index (DHI)

based on the cumulative distribution function of SJP.

(6) The DHI was then calculated by combining the weights and ratings of various

categories, and is given as:

DHI = (Mr ×Mw) + (MOr ×MOw) + (Sr × Sw) + (Er × Ew) (4.21)

where Mr, MOr, Sr, and Er represent the ratings of M, MO, S, and E categories,

respectively, and Mw, MOw, Sw, and Ew represent the weights of M , MO, S,

and E categories. The DHI values were then rescaled to a 0–1 range, and evenly

classified into four groups as given in Table 4.3.
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Table 4.3: DHI Classification for Hazard Assessment

DHI value Classification
0 to 0.25 Low

0.25 to 0.50 Moderate
0.50 to 0.75 High
0.75 to 1.00 Very High
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Figure 4.3: Weight and Rating Scheme Based on Cumulative Probability Function
for SJP

4.3.2 Drought Vulnerability Assessment

Indicators of vulnerability depends on the region under consideration and are

generally complex to objectively assess. Several studies have listed potential vul-
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nerability indicators for studies related to climate change impact on water resources

(Brooks et al., 2005; Metzger et al., 2006). Depending on the study area, the factors

relevant to the location must be chosen. For this study, the vulnerability indicators

were chosen keeping in mind that it is a developed economy. Hence, after careful

consideration of the availability of reliable data on future projections of vulnerability

indicators, the following were chosen: Population Density (PD), Municipal Water

Demand (MW), Irrigation Water Needs (IW), Livestock Water Demand (LW), In-

dustrial Water Demand (INW), Water Demand from Mining sector (MNW), and

Water needs for Steam electric plants (SW). Population Density (PD) defines the

number of persons per km2. From a human and economic perspective, this is a

very important factor determining the degree of calamity associated with a disaster.

Higher the PD of the affected area, higher will be the vulnerability of the region,

since more people will be affected. The rest of the factors were chosen in light of the

most active and important economic sectors in Texas (Agriculture, Mining, Manu-

facturing Industries). These vulnerability indicators were divided into four classes

using the Jenks natural break method. Then, each class of the indicators was given a

rating on a scale of 0–1, with lower class values having a lower rating and vice versa.

The Aggregate Drought Vulnerability Index (DVI) was then calculated as:

DV I =
PD +MW + IW + LW + INW +MNW + SW

7
(4.22)

The DVI which consists of 7 component indicators lie within the range of 0–1. Each

of the components was given equal weightage and the aggregate DVI was obtained as

a simple average of individual factors. Based on the value of DVI, vulnerable regions

were classified under four classes. Table 4.4 shows the four vulnerability classes

and the corresponding values of DVI. Areas that fall under high vulnerability group
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typically sustain more damage due to drought than other regions, thus entailing the

need for a more careful crop and water management scheme.

Table 4.4: DVI Classification for Vulnerability Assessment

DVI value Classification
0 to 0.25 Low

0.25 to 0.50 Moderate
0.50 to 0.75 High
0.75 to 1.00 Very High

4.3.3 Drought Risk Assessment

In this study, the drought risk assessment is conducted by combining the hazard

and vulnerability assessment. Typically, the Drought Risk Index (DRI) is calculated

as:

DRI = DHI ×DV I (4.23)

where DHI and DVI are aggregated drought hazard and vulnerability indices. If

either DVI or DHI is 0, there will be no risk associated with that drought event.

A higher value of either DVI or DHI will result in increased risk from the drought

event. Thus, it can be seen that more information about the risk associated with a

drought event can be obtained by linking hazard and vulnerability.
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5. RESULTS AND DISCUSSION

The results and discussions presented in the subsequent sections follow the order

listed below: (1) Drought quantification using MDI, (2) Drought hazard assessment

using DHI, (3) Drought vulnerability assessment using DVI, and (4) Drought risk

assessment as a combination of hazard and vulnerability.

5.1 Drought Quantification using MDI

The components required for calculation of the drought index MDI, was obtained

using VIC model simulations. The model was calibrated and validated to check that

the simulations were a good representation of the observed values. The performance

of MDI was also compared against PDSI, which is the most commonly used drought

index in United States.

5.1.1 Calibration and Validation of VIC Model

Liang et al. (1994) suggests a set of recommended parameters and the plausible

range of values for each of them that can be used for calibrating the model. The

recommended parameters and the plausible range of values for each of them are given

in Table 5.1.

Table 5.1: Model Parameters for Calibration of VIC Model

Soil parameter Unit Range of values

Infiltration shape parameter (binf) None 0-0.4
Maximum sub-surface flow rate (Dsmax) mm/day 0-30

Fraction of Dsmax when non linear flow starts (Ds) None 0-1
Depth of second soil layer (D2) meter 0.1-1.5
Depth of third soil layer (D3) meter 0.1-1.5

Fraction of maximum soil moisture when non linear flow starts (Ws) None 0-1

In this study, six soil parameters were considered for calibration purposes. As
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regards the calibration of the routing model, the suggested parameters for adjustment

included velocity and diffusivity. The model developers are less specific about the

routing model calibration as compared to the VIC model calibration. Application

based studies focusing on monthly discharge from large basins have shown that it does

not require high accuracy in the routing model parameters. Hence, while parameters

like flow direction and contributing fraction can be obtained from DEM, for other

parameters, like flow velocity and diffusivity, physically reasonable values were chosen

without further calibration (www.hydro.washington.edu). Since only monthly stream

flows were required, diffusivity and velocity values of 800 m2/s and 1.5 m/s were

deemed acceptable (Lohmann et al., 1996, 1998).

The VIC model calibration was performed using a random auto–start simplex

method program. The method attempts to minimize the differences between simu-

lated and observed discharge records. The magnitude of the differences was given

a value by computing the Nash–Sutcliffe R2 coefficient where 1 represents a perfect

match. The cases wherein the coefficient had negative values were not be considered.

Having decided on the model parameters required for calibration, the random au-

tostart simplex method starts by selecting a large number of random parameter sets,

solving for the model output at each one. It then selects the best set of parameters

from the randomly generated sets and uses those to start the simplex minimization

algorithm. To explain the procedure simply, if we have n parameters for calibra-

tion, the simplex method tries to corral the minimum within a geometric shape with

n+ 1 apexes. Once a minimum has been obtained, the algorithm begins to minimize

the volume of the simplex, until all of its apexes are within a specified tolerance of

each other. The local minima problem inherent to the simplex method is countered

by incorporating the random autostart process, wherein in each case a new set of

initial parameters is produced. By running the algorithm several times, the global

38



parameters are eventually located.

In this study, the simplex method was applied using random autostart populations

of 75–100 parameter sets. The entire cycle was repeated from 5–10 times for each

sub–basin. Each autostart yielded different R2 values (usually within +/- 0.1) and

different parameter sets. The simplex method stops when the convergence occurs

for R2 values with a tolerance of 0.001. If the calibrated parameter values do not

seem to be physically viable even if they give a high R2 value, the user may employ

visualization of the simulated stream flow and check how well it captures the physical

response of the basin.

In the case of stream flow, the routing model was used to route the grid–cell

runoff to the selected station locations. Results from the routing model were aggre-

gated to a monthly scale and compared with the observed gage data. The model

directly simulates evapotranspiration which was compared against the observed ET

values. The soil moisture averaged for each month at 40 cm soil depth was compared

with the observed soil moisture obtained from SCAN stations and climate reference

network. The two performance criteria selected were correlation coefficient and the

Nash–Sutcliffe (N–S) efficiency. These are defined as:

r =
M

∑M
i=1(SiOi)−

∑M
i=1 Si

∑M
i=1Oi√

(M
∑M

i=1 Si
2 − (

∑M
i=1 Si)

2)(M
∑M

i=1Oi
2 − (

∑M
i=1Oi)2)

(5.1)

N-S efficiency = 1.0−
∑M

i=1(Oi − Si)2∑M
i=1(Oi − Ō)2

(5.2)

where M is the number of months, Si is the simulated stream flow for the ith

month, Oi is the observed stream flow for ith month. The logarithmic transforms of

observed and simulated values was used to calculate the N–S value so as to reduce

sensitivity to extreme values.
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A higher value of correlation coefficient and the Nash–Sutcliffe (N–S) efficiency

indicate good performance of the model. The closer the value is to 1, the more

accurate the model is.

Table 5.2 gives the locations of validation stations for input variables, and the

time period considered for validation. The chosen validation time period was de-

pendent on the availability of observed data, which is sparse particularly in the case

of soil moisture. Figures 5.1, 5.2, and 5.3 show the time series comparison between

observed and simulated values of stream flow, evapotranspiration and soil moisture,

respectively, at the selected locations in various climate zones of Texas. Table 5.3

gives the values of performance statistics at each location considered for validation.
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Figure 5.1: Comparison of Simulated and Observed Stream Flows at Selected
Stations
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                Figure 2a. Comparison of simulated and observed streamflow for selected stations 
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Figure 5.1: Continued
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Figure 5.2: Comparison of Simulated and Observed Evapotranspiration at Selected
Stations
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                    Figure 2b. Comparison of simulated and observed evapotranspiration for selected stations 
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Figure 5.3: Comparison of Simulated and Observed Soil Moisture at Selected
Stations
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                       Figure 2c. Comparison of simulated and observed soil moisture for selected stations 
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Figure 5.3: Continued
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Table 5.3: Details of Validation Stations and Time Periods

Variable Climate region Correlation coefficient N-S efficiency

Streamflow (CFS) Continental 0.8 0.54
Streamflow (CFS) Arid 0.93 0.77
Streamflow (CFS) Semi-arid 0.96 0.81
Streamflow (CFS) Semi-humid 0.85 0.75
Streamflow (CFS) Humid 0.88 0.74

Evapotranspiration (mm) Continental 0.85 0.71
Evapotranspiration (mm) Arid 0.92 0.79
Evapotranspiration (mm) Semi-arid 0.82 0.65
Evapotranspiration (mm) Semi-humid 0.82 0.68
Evapotranspiration (mm) Humid 0.77 0.64

Soil moisture (percentile) Continental 0.89 0.58
Soil moisture (percentile) Arid 0.82 0.6
Soil moisture (percentile) Semi-arid 0.81 0.8
Soil moisture (percentile) Semi-humid 0.76 0.72
Soil moisture (percentile) Humid 0.96 0.87

It can be seen from Table 5.3 that the correlation coefficients for stream flow

validation ranges from 0.80 to 0.96, which means the model is capable of explaining

64% to 92% of variability in the observed data. The N–S efficiency values range from

0.54–0.81. Since an N–S value of 1 corresponds to a perfect match and 0 corresponds

to the situation where simulated values match the mean of observed values, a value

of 0.5 may be considered to represent a mediocre model performance. Hence, from

the values obtained for the model at all the 5 stations, it can be seen that the model

performance is satisfactory.

In the case of evapotranspiration, the correlation coefficients fall within the range

of 0.71 to 0.92, which means the model is explaining 50% to 85% of variability in the

observed data. The N–S efficiency values for ET lie within the range of 0.64–0.79.

Although the model replicates ET values well within acceptable limits, it seems to

overpredict the values slightly, when it comes to humid climate zone, which in reality
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experiences the minimum evapotranspiration in Texas. In the case of soil moisture,

the correlation coefficient values fall within the range 0.76–0.96, and thus the model

explains 58%-92% of variability in the observed data. The N–S efficiency values for

soil moisture lie within the range of 0.58–0.87.

5.1.2 Comparison of MDI With PDSI

In order to understand the performance of MDI in quantifying drought events, we

compared it with other existing and established univariate and multivariate drought

indices found in the literature. As a preliminary step for assessing the performance

of MDI, it was compared against the Palmer drought severity index (PDSI). PDSI

was chosen for two reasons: (1) It is widely used in the United States, and (2) it

is formulated on the basis of the physical constituents of water balance. MDI also

considers precipitation, runoff, evapotranspiration and soil moisture, which form the

major components of the water balance. The PDSI values used for comparison were

obtained from National Climate Data Center (NCDC).

The drought classification for MDI values is given in Table 4.1. MDI followed

the same drought classification as that of its constituent indices like SPI, SRI, etc.

Comparison of the MDI time series against PDSI for different climate zones of Texas

are shown in figures 5.4 a through e. The portions of time series which correspond

to two major Texas drought periods: 1950–1957 and 2010–2011 have been enlarged

for better visualization. However, although a perfect correlation is not expected

between MDI and PDSI, it is natural that they both might follow a general behavioral

pattern. Hence, it makes sense to analyze the monotonic relationship between MDI

and PDSI. For this purpose, Spearman’s rank correlation was used. Spearman’s rank

correlation (ρ) is a nonparametric statistical dependence measure that has many

advantages over the Pearson correlation coefficient, since it does not depend upon
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the distribution of data and is specifically designed to study monotonic relationship

between variables. Table 5.4 shows Spearman’s ρ between PDSI and MDI in all

five climate zones of Texas. It can be seen that in all climate zones, a positive

monotonic relationship is seen between PDSI and MDI, and the maximum value

reaches 0.71. It can be seen from Table 5.4 that the correlation between PDSI and

MDI is strongest for the continental steppe climate zone which is characterized by low

precipitation and mild winters. Following that, a relatively better correlation between

the two indices can be seen for the humid region which is characterized by relatively

higher precipitation. The correlation is weak for arid region and transition zones

like semi–arid and semi–humid zones. Arid and semi–arid regions, in particular, are

characterized by higher rates of evapotranspiration and lower precipitation. It can

be seen that MDI and PDSI quantify droughts differently, particularly for transition

climate zones and regions with higher rates of evapotranspiration.
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Table 5.4: MDI Drought Classification

MDI value Classification

2.0 or more Extremely wet
1.5 to 1.99 Very wet
1.0 to 1.49 Moderately wet

-0.99 to 0.99 Near normal
-1.0 to -1.49 Moderately dry
-1.5 to -1.99 Severely dry
-2.0 or less Extremely dry

Table 5.5: Spearmans Rank Correlation Between PDSI and MDI

Climate zone Spearmans rank correlation

Continental 0.71
Arid 0.57

Semi-arid 0.51
Semi-humid 0.54

Humid 0.61

5.2 Drought Hazard Assessment

For the quantification of drought hazard using the joint occurrence probability

of severity and duration, a weight and rating system as shown in Figure 4.3 was

followed. The joint probability of severity and duration was obtained using appro-

priate copula functions. Previous drought studies conducted in Texas advocates the

use of log–normal and exponential distributions for fitting severity and duration, re-

spectively (Rajsekhar et al., 2012, 2014). A Maximum Likelihood method was used

for parameter estimation. Even though the marginals belong to different families,

copulas permit the modeling of their dependence structure. A two stage Maximum

Likelihood method known as Inference Function for Margins (IFM; Joe, 1997) was
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used for the parameter estimation of the following families of copulas considered in

the study: Elliptical family (Gaussian), and Archimedean family (Clayton, Gumbel,

and Frank). This is a two stage approach. Suppose we have a bivariate distribution

with n observations for each margin, the first step of IFM is to use the maximum

likelihood estimation (MLE) method to find the vector of marginal parameters β

which maximizes the likelihood function:

logL(Xij;α, β) =
n∑
i=1

2∑
j=1

logfi(Xij; βj) (5.3)

where f(.) is the marginal probability density function. Section 2 briefly discusses pa-

rameter estimation using the MLE method. Then, the estimated β̂IFM = (β̂T1 , β̂
T
2 )T

from step 1, along with the sample data, was used to estimate the copula parameter

α, which maximizes the likelihood function:

logL(Xij;α, β) =
n∑
i=1

logc(F1(Xi1; β̂1), F2(Xi2; β̂2)) (5.4)

where F (.) is the marginal CDF. Again, iterative methods were applied to optimize

the likelihood function to obtain the copula parameters α̂IFM . The most suitable

copula was chosen through a visual assessment of the scatter plots of observed and

simulated data, and distance statistics like Anderson–Darling statistic. Table 5.6

lists the chosen copula for each planning region. The Gumbel copula was chosen

for modeling the dependence structure in arid and humid climate regions. The

Gaussian copula was found to be appropriate for semi-humid and semi-arid regions,

whereas the Frank Copula was chosen for continental-steppe region. Figure 5.5

shows the visualization of the observed severity–duration data and the simulated

severity–duration data from the best fit copula chosen for each planning region.
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Figure 5.6 shows the joint probability plots of severity and duration for different

planning regions. This would be used later for the calculation of Drought Hazard

Index (DHI).

Table 5.6: Copula Chosen for Development of Joint Distribution in Each Planning
Region

Region Region 1 Region 2 Region 3 Region 4 Region 5
Arid Continental Semi-Humid Semi-Arid Humid

Best Copula Gumbel Frank Gaussian Gumbel Gaussian
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Scatterplots between observed severity−duration values and simulated values from best fit
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Figure 9.

Region 5− Gaussian Copula

Figure 5.5: Scatter Plots Between Observed and Simulated Severity-Duration
Values From Best Fit Copula For Each Planning Region
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The joint probability of severity and duration obtained from the plots shown in

Figure 5.6 was transformed to Standardized Joint Probability (SJP), which lies in

the normal probability space and follows the same classification system for standard

drought indices like SPI. The weights were assigned for SJP values based on the

system given in Table 4.2. Each of these weights was then assigned ratings from

1 through 4 on the basis of actual joint occurrence probability at the location of

interest.

In order to understand the weights and ratings system to calculate the DHI,

an example is given below. A random grid in Texas was chosen, and the joint

probabilities of severities and durations were obtained using the copula probability

plot. These probabilities were standardized to SJP. Based on the observed SJP

values at this location, each SJP class (M, MO, S, and E) was further divided into
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four sub–classes through the Jenks Natural Breaks method. These sub–classes were

assigned ratings from 1 through 4. Table 5.7 gives the weights assigned, based on the

SJP classes, and the ratings assigned through sub–classification, based on observed

occurrence probabilities. Hence, if the location of interest is experiencing a series of

drought events that has the following SJP values during the time period considered:

-2.69, -1.54, -0.89, 0.14; then the weights and ratings assigned for these specific events

based on Table 5.7 would be: 4 and 1, 3 and 2, 1 and 4, 1 and 2, respectively. Thus,

the DHI based on these weights and ratings would be 4×1 + 3×2+1×4+1×2 = 16.

This same procedure was followed for all the grids for the time period of interest,

and then the DHI values were rescaled to 0–1 range.

Table 5.7: Weight and Rating System for DHI Formulation at a Randomly Chosen
Location

SJP Value Class Weight Jenks Sub-Classification of SJP Rating

-0.99 to 0.99 Near normal or mild (M) 1 <-0.724 4
-0.723 to -0.215 3
-0.214 to 0.821 2

>0.822 1

-1.0 to -1.49 Moderate (MO) 2 <-1.84 4
-1.839 to -1.474 3
-1.473 to -1.065 2

>-1.065 1

-1.5 to -1.99 Severe (S) 3 <-1.984 4
-1.983 to -1.723 3
-1.722 to -1.345 2

>-1.344 1

-2.0 or less Extreme (E) 4 <-10.171 4
-11.08 to -6.763 3
-6.762 to -2.915 2

>-2.915 1

Figure 5.7 shows the drought hazard map for Texas during 1950–2012. Table

5.13 gives the percentage area under various hazard classes ranging from low to very
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high. It can be seen that the percentage area under ”Very High” and ”High” drought

hazard increases with time. ”Very High” and ”High” hazard zones are limited to

arid, continental, and parts of semi-arid and semi-humid. A combination of several

factors, like high evapotranspiration rates, low precipitation, and obvious lack of

perennial rivers in these regions, contribute towards a higher drought hazard. These

conditions are expected to worsen in future due to rising trends in temperature and

decreasing precipitation in arid and semi–arid climate regions.

Figure 5.7: Drought Hazard Map For Texas During 1950-2012
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Table 5.8: Percentage Area Under Different Classes of Drought Hazard During
Various Time Periods

Region Classification Level Percentage Area

Low Hazard 1
Arid Moderate Hazard 17.12

High Hazard 62.84
Very High Hazard 19.04

Low Hazard 8.64
Continental-Steppe Moderate Hazard 21.27

High Hazard 59.58
Very High Hazard 10.51

Low Hazard 17.74
Semi-Humid Moderate Hazard 69.07

High Hazard 12.77
Very High Hazard 0.45

Low Hazard 68.2
Humid Moderate Hazard 30.37

High Hazard 1.43
Very High Hazard 0

Low Hazard 29.09
Semi-Arid Moderate Hazard 46.79

High Hazard 24.12
Very High Hazard 0
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However, the actual risk posed by these drought events will depend on the so-

cio–economic status of the area under consideration too. That will determine how

well the region can cope when a drought event occurs. Thus, a joint hazard and

vulnerability assessment is required to get a true picture of how the region under

consideration will be affected in the event of drought. The following subsection

discusses the results of vulnerability assessment.

5.3 Drought Vulnerability Assessment

In order to account for the socio–economic effects of drought in a developed

economy like the study area, a number of factors that reflect the trends in water

demand were considered. Values of population densities, municipal water demand,

and non–municipal water demands from the primary economic sectors in Texas like

agriculture, mining, manufacturing, and steam electric power generation were the

vulnerability factors considered in this study. The county–wise values of these fac-

tors were obtained from TWDB and each of the above mentioned factors was divided

into four classes based on natural break method that uses the average of each range

to distribute the data more evenly across the ranges. The values in each class were

then rescaled to fall within the ranges mentioned in Table 4.4. Classes with higher

values are given a higher rating and vice versa. The composite DVI was then calcu-

lated by taking a simple average of the rescaled values of all the factors. A spatial

interpolation was done using kriging to obtain the DVI values for grids having 1/8th

degree resolution. To illustrate the calculation of DVI, consider Anderson county.

This location has a PD of 61210. The PD values for various counties in Texas ranges

between 82 and 4883007. Based on the Jenks method, the PD value of 62017 be-

longed to the first class which was assigned a value of 0.25. This is repeated for other

factors and the overall average will be taken to get DVI at that location.
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Figure 5.8 shows the composite drought vulnerability map for Texas during 1950-

2012. Table 5.9 gives the percentage area under various vulnerability classes ranging

from low to very high. High vulnerability areas are concentrated in arid, continen-

tal, and semi-arid regions. A few hot ”spots” were found in semi-humid and humid

regions. This is because these regions have high projected population densities and

municipal and irrigation water demands. The areas showing high vulnerability in-

dices will typically exhibit higher levels of agricultural damage due to droughts.

Hence, identification of highly vulnerable areas is necessary to adopt better crop

management tactics and other intensified localized planning measures.

Figure 5.8: Composite Drought Vulnerability Map For Texas During 1950-2012
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Table 5.9: Percentage Area Under Different Classes of Drought Vulnerability
During Various Time Periods

Region Classification Level Percentage Area

Low Vulnerability 34.56
Arid Moderate Vulnerability 28.01

High Vulnerability 32.46
Very High Vulnerability 4.97

Low Vulnerability 24.78
Continental-Steppe Moderate Vulnerability 41.12

High Vulnerability 34.1
Very High Vulnerability 0

Low Vulnerability 19.87
Semi-Humid Moderate Vulnerability 22.34

High Vulnerability 57.79
Very High Vulnerability 0

Low Vulnerability 63.52
Humid Moderate Vulnerability 9.37

High Vulnerability 26.61
Very High Vulnerability 0

Low Vulnerability 29.97
Semi-Arid Moderate Vulnerability 16.19

High Vulnerability 53.84
Very High Vulnerability 0

Risk associated with drought events was then calculated as the product of hazard

and vulnerability.

5.4 Drought Risk Assessment

The product of DHI and DVI will give the Drought Risk Index (DRI) for Texas.

DRI follows the same classification system as DHI and DVI. Figure 5.9 shows the

drought risk map for Texas during 1950-2012. Table 5.10 shows the percentage area

under different drought risk categories. It can be seen that the ”Very High” risk
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areas are concentrated within arid, continental-steppe, and semi-arid regions. It can

be seen that the spatial distribution of drought hazard and risk are not the same.

The reason is the vulnerability of the area that indicates how well it can cope after

a drought event. For example, if a region has relatively lower population density,

and subsequently lower water demand, it will be less vulnerable to a drought event,

and hence even for a higher magnitude drought, the associated risk might be less

than that compared to a highly populated region which has a higher vulnerability

towards droughts. Thus, the socio–economic scenario of the study area also plays an

important role in determining the final impact of the drought event on the inflicted

area.
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Figure 5.9: Drought Risk Map For Texas During 1950-2012
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Table 5.10: Percentage Area Under Different Classes of Drought Risk During
Various Time Periods

Region Classification Level Percentage Area

Low Risk 14.76
Arid Moderate Risk 18.13

High Risk 58.74
Very High Risk 8.37

Low Risk 9.08
Continental-Steppe Moderate Risk 40.62

High Risk 43.85
Very High Risk 6.45

Low Risk 19.98
Semi-Humid Moderate Risk 49.04

High Risk 30.98
Very High Risk 0

Low Risk 43.72
Humid Moderate Risk 39.87

High Risk 16.41
Very High Risk 0

Low Risk 29.10
Semi-Arid Moderate Risk 46.77

High Risk 19.48
Very High Risk 4.65
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6. CONCLUSIONS

In this report, a novel multivariate, non–linear, and multi–scalar drought index

named Multivariate Drought Index (MDI) is introduced. MDI uses a feature extrac-

tion technique known as Kernel Entropy Component Analysis (KECA), and finds the

smallest set of features that maximally preserves the entropy estimate of the input

data set, thus preserving all the information content that can be obtained from the

input data set of precipitation, evapotranspiration, runoff, and soil moisture. Po-

tential drought hazard regions were identified using a Drought Hazard Index (DHI)

formulated on the basis of multivariate occurrence probabilities of drought proper-

ties. The vulnerability of the study region was accounted for by calculating a Drought

Vulnerability Index (DVI) based on various socio–economic factors. A combined risk

assessment of future droughts using both DHI and DVI was conducted to identify

the areas which might fall under high drought risk. Overall, the results obtained

from this study are expected to help achieve an effective drought mitigation strategy

for the state of Texas. A better understanding of the evolution of drought events,

integrated characterization of drought, the magnitude of risk it poses, and knowl-

edge of its frequency of occurrence will help mankind to prevent, or at least better

prepared for the many devastating effects droughts can potentially cause.
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