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Abstract  
When developing a Watershed Protection Plan (WPP) or a Total Maximum Daily Load (TMDL), 
it is often difficult to accurately assess the pollutant load for a watershed as a result of inadequate 
water quality monitoring data.  According to the Texas Commission on Environmental Quality 
(TCEQ), there are 274 bacteria impairments in Texas water bodies out of 386 impaired water 
bodies.  Data on bacteria in water bodies is often more sparse than other types of water quality 
data, which hinders the development of WPPs or TMDLs.  To address this problem, a spatial 
watershed model was developed to simulate bacteria concentrations in streams resulting from 
nonpoint sources using the Spatially Explicit Load Enrichment Calculation Tool (SELECT) 
combined with a simple rainfall-runoff model.  SELECT is an automated Geographical 
Information System (GIS) tool that can estimate potential E. coli loads from point and non point 
sources in watersheds using spatial characteristics such as land use, population density, and soil 
type.  The watershed model applies a rainfall-driven loading function to the potential E. coli 
loads calculated by the output of SELECT.  The SELECT methodology combined with this 
watershed model was applied to estimate E. coli loads in the Geronimo Creek watershed, located 
in central Texas.  The simulated E. coli concentrations from the model were compared to actual 
monthly routine grab sample E. coli data collected at two sampling site near the outlet of the 
subwatershed.  The runoff volumes were predicted with good to very good agreement for both 
sampling sites.  Nash – Sutcliffe efficiencies range from 0.74 to 0.84 and root mean square error 
– observations standard deviation ratio (RSR) range from 0.51 to 0.40. The predicted E. coli 
concentrations performed unsatisfactorily for both sites and four calibration methods.   The 
results show that the model does not include significant factors contributing to the transport of E. 
coli bacteria but can be modified to include these factors.   
 
Problem and Research Objectives 

When developing a Watershed Protection Plan (WPP) or a Total Maximum Daily Load 
(TMDL), it is often difficult to accurately assess the pollutant load for a watershed because not 
enough water quality monitoring data is available.  Bacteria are the most common reason for 
impairment of Texas water bodies.  According to the Texas Commission on Environmental 
Quality (TCEQ), there are 274 bacteria impairments in Texas water bodies out of 386 impaired 
water bodies (TCEQ 2008). Bacteria water quality data is often more sparse than other types of 
water quality data, which hinders the development of WPPs or TMDLs.   

In order to develop WPPs or TMDLs, additional bacteria water quality data must be 
collected which is costly and time consuming.  The bacteria load analysis for a watershed cannot 
begin until the water quality monitoring data collection is completed.  Generally, water quality 
data can take anywhere from a year to multiple years to collect for a substantial dataset.  The 
U.S. EPA estimates water quality monitoring of all TMDLs nationally, “The cost of water 
quality monitoring to support the development of TMDLs is expected to be approximately $17 
million per year” (USEPA 2001).  A considerable portion of developing a TMDL is to allocate 
pollutant load and to identify potential sources.  This can be done with modeling which can be 
costly and require a significant amount of input data. 
  Models such as Soil and Water Assessment Tool (SWAT) and Hydrological Simulation 
Program- FORTRAN (HSPF) have been used for bacterial modeling (Benham, et al., 2006; 
Sadeghi & Arnold, 2002).  Other simplistic microbial models such as, the potential non-point 
pollution index (PNPI) and a Spatially Explicit Delivery MODel (SEDMOD), have been 
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developed to rank the potential pollution impacts of areas from nonpoint sources primarily 
utilizing land use and geomorphology (Fraser, et al. 1998; Munafo, et al. 2005).   

SELECT is an automated Geographic Information System (GIS) tool that can assess 
potential E. coli loads in a watershed based on spatial factors such as land use, population 
density, and soil type (Teague, et al., 2009).  SELECT is able to calculate a potential E. coli load 
and highlight areas of concern for best management practices (BMPs) to be implemented.  The 
potential E. coli load in SELECT is calculated by distributing the contributing sources spatially 
over the entire watershed.  The population densities of potential contributors are determined with 
stakeholder input to accuracy represent the watershed, however, SELECT is a worst case 
scenario model and assumes that the largest amount of contribution possible from individual 
sources.   

Current bacteria models either require extensive monitoring data within the watershed for 
calibration or are not able to predict actual E. coli concentrations in the water body.  A simple 
model that is able to predict actual bacteria concentrations in a water body is needed in order to 
develop TMDLs or WWPs within the state of Texas.  The objective of this study was to develop 
a model that would estimate the runoff volume and the E. coli concentration contributing from 
surface runoff at a sampling site drainage area outlet.   
 The overall objective of this research project was to develop a conceptual model in 
ArcGIS 9.X utilizing the potential E. coli load estimated by SELECT to simulate E. coli 
concentrations occurring in Geronimo Creek.  It was presumed that precipitation is the main 
driving factor for the transport of E. coli bacteria from sources to the stream.  Also the affects of 
temperature were negligible, since in Texas watersheds the monthly normal daily mean 
temperatures do not vary from month to month by more than 10 °F. 

(1) To apply SELECT to Geronimo Creek watershed using stakeholder inputs concerning the 
E. coli sources and the population densities. 

(2) Another sub objective was to develop an automated rainfall-runoff model in ArcGIS 9.X 
utilizing rain gauges located in and around the Geronimo Creek watershed and to 
estimate the E. coli concentrations in the creek.   
 

Methodology 
E. coli concentrations were calculated using a modified delivery factor originally 

developed by McElroy et al. (1976) for pollutant loading from livestock facilities: 
      (1) 

where 
C = concentration of E. coli at sampling site (CFU/mL) 
Y = daily loading rate of E. coli at sampling site (CFU) 
a = unit conversion factor (2.54  104) – to convert from in•m2 to mL 
R = daily runoff at sampling site (in) 
A = grid cell area (m2) – 900 m2 
D = delivery factor (dimensionless) 

The equation was intended for livestock facilities but was applied to multiple non-point sources 
calculated using SELECT and ArcGIS 9.X.  The variable concentration of pollutant in runoff (C) 
was calculated using the equation above to determine the concentration of E. coli in Geronimo 
Creek.  The loading rate (Y) was calculated in SELECT for livestock, wildlife, and domestic 
sources.  McElroy et al. (1976) acknowledged that the quantity of pollutants discharged depends 
mostly on runoff volume.  
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Runoff (R) 

 
Figure 1. Geronimo Creek Watershed Study Area With Rain Gauges and Sampling Sites 
 

Daily precipitation data was obtained at 5 sites, Canyon Dam, Kingsbury, New Braunfels, 
San Marcos, and Seguin, from the National Climatic Data Center (NCDC) for 1996 to 2010.  
The NCDC rain gauges shown in figure 1 were utilized to develop a daily precipitation grid.   

The minimum rainfall to induce runoff was calculated using the SCS curve number 
approach by using the average area weighted curve number for the Geronimo Creek watershed.  
The watershed curve number grid was developed in ArcGIS 9.X. by intersecting the Soil Survey 
Geographic (SSURGO) hydrologic soil group with the land use type and using an NRCS lookup 
table.   The area weighted curve number for the Geronimo Creek Watershed was calculated as 
82.  The minimum rainfall to induce runoff calculated using the area weighted curve number was 
0.44 inches.    

Runoff precipitation was assumed to occur in the watershed if one of the five rain gauges 
measured precipitation greater than the minimum rainfall to induce runoff.  A precipitation grid 
was developed in ArcGIS 9.X. for each day with runoff precipitation occurring on the same day 
as when routine E. coli samples were taken from the Geronimo Creek sampling sites using the 
ArcGIS Spatial Analyst Extension.  The interpolation method used will be inverse distance 
weighted (IDW).  Inverse distance weighting assumes that observations closer to one another are 
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more alike than ones farther apart (Zhang & Srinivasan, 2009).  

 
Figure 2. Flow chart illustrating the calculation of accumulated runoff volume 
 

The runoff volume at a sampling site was then calculated from the precipitation grid 
(Figure 2).  An automated tool was programmed into ArcGIS to calculate a runoff grid with the 
inputs being a rain gauge shapefile with the measured amounts of rainfall for each rain gauge as 
fields in the attribute table and an S grid calculated from the curve number grid.  The runoff grid 
was calculated using the SCS curve number approach with the equation 

 where Q is the runoff depth in inches, P is the precipitation and S 
is the maximum soil water retention parameter derived from the curve number.  The runoff 
equation requires that P must exceed 0.2S before any runoff is generated. The average runoff is 
first calculated for the entire watershed on a 30 meter grid cell basis.  The curve number grid is 
calculated into an S grid using the equation,  where CN is the curve 
number.   For the results of (P - 0.2S), the negative values were given a value of zero so that 
runoff was not calculated for cells with P less than 0.2S.  After the runoff depth was calculated, 
the runoff depth was then converted to a runoff volume per grid cell by multiplying by the cell 
area which was 900 square meters creating a runoff volume grid.   

An additional part of the Arc GIS 9.X. tool was used to automatically calculate with flow 
accumulation grid for the watershed.  The inputs to the tool were the previously generated runoff 
volume grid and a Digital Elevation Model (DEM) over the watershed area provided by the 
Texas A&M University SSL which had a 30 meter grid cell size.  The result of the flow 



6 
 

accumulation would be the total amount of runoff volume going through a specific grid.  The 
runoff volume at a sampling site is estimated by identifying the runoff volume value grid cell at 
the sampling site drainage area outlet. 

 
Potential E. coli Load (Y) Estimation using SELECT 

Potential E. coli loads for Geronimo Creek were predicted using SELECT and input from 
stakeholders for stocking rates and possible sources.  A custom land use classification (Figure 4) 
was provided by the Texas A&M University Spatial Sciences Laboratory (SSL) using 2008 
National Agriculture Imagery Program (NAIP) imagery and a prior Texas Parks and Wildlife 
(TPWD) Classification.   

 
Figure 3. Geronimo Creek watershed land use classification 
 
The SWAT model was used to delineate 21 subwatersheds as well as the watershed stream 
channel.  In the Geronimo Creek watershed, it was determined that livestock sources for the 
watershed are goats, horses, and cattle.  Wildlife sources are deer and feral hogs.  Domestic 
sources consist of dogs and on-site wastewater treatment systems (OWTSs).   A conversion of 
0.63 fecal coliform to E. coli was used in the model.  The conversion factor of 0.63 was decided 
using the USEPA’s regulatory standards for fecal coliform and E. coli in recreational waters.  
The regulatory standard for fecal coliform was 200 organisms per 100 mL and is 126 organisms 
per 100 mL for E. coli (USEPA, 2003).  The conversion factor was determined by taking the 
ratio of these two regulatory standards.   

For livestock and wildlife, the number of animals is estimated with animal densities and 
stakeholder input.  For cattle, the stakeholders determined a stocking rate of 20 and 10 acres per 
animal should be applied to Comal and Guadalupe Counties respectively with a suitable habitat 
of rangeland, forest, and managed pasture land use types.  A density for horses was determined 
to be 132 acres per animal over the entire watershed with a total watershed population of 124 
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horses with a suitable habitat of rangeland.  The animals are distributed evenly across suitable 
habitats and a fecal production rate is then applied per animal.  Due to goats being raised on goat 
farms, 200 goats out of the total watershed population of 750 animals were distributed evenly in 
the watershed on rangeland, forest, and manage pasture land use types.  The remaining animals 
were concentrated to specific watersheds which contained known goat farms for a specified 
number of animals.  The potential E. coli load for the subwatersheds containing goats was 
calculated per subwatershed by multiplying the number of animals per subwatershed by the fecal 
production rate per animal.  White-tailed deer had a population density of 10 acres per animal 
(Lockwood, 2005).  The suitable habitat determined for deer were forest and rangeland with at 
least 20 acres of contiguous terrain available.  Feral hogs had a population density of 26 acres per 
animal and were only distributed on suitable habitat within 100 meters of the main stem of 
Geronimo Creek which is perennial.  Feral hogs were not distributed around Alligator Creek 
because it is an intermittent creek and is an unsuitable habitat for feral hogs.   The suitable 
habitats for feral hogs as determined by stakeholders were forest, rangeland, managed pasture, 
and cultivated crops.   

For dogs, the 2000 census data was used to calculate the contribution by using a dog 
density of 1 dog per household.  The potential E. coli load for OWTSs was calculated by Espey 
Consultants.  For OWTSs, spatially distributed point data of each household was collected from 
911 address data and households within Certificate of Convenience and Necessity (CCN) areas 
were removed to not include households being serviced by a wastewater treatment facility.  A 
failure rate was determined for the OWTSs using SSURGO soil limitation classes and the age of 
the system to calculate the percentage of E. coli contributing to the watershed due to septic 
failure.  A fecal production rate was then applied to each household for dogs and OWTSs.  Since 
SELECT divides the watershed into a raster grid with a 30 meter cell size, the potential load is 
calculated over the entire watershed at a 30 meter cell size.  The individual raster files for each 
source are then added together spatially to create a total load raster (Figure 5) for the watershed 
that is divided into 30 meter grid cells.   

 
Figure 4. Total potential E. coli load calculated using SELECT for the Geronimo Creek 
watershed 
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The total load raster (Figure 4) estimates the potential E. coli load for the entire watershed based 
on a worst case scenario assuming the entire load calculated reaches the water body.  Another 
part of the tool programmed in ArcGIS 9.X. was to calculate the E. coli load actually reaching a 
specific grid cell in the watershed.   

 
Figure 5. Flow chart illustrating the calculation of the contributing E. coli load  
 

The inputs to the tool were the previously calculated runoff grid, the total load raster 
which was an output from running SELECT, and the DEM.  The first step to estimating the E. 
coli load reaching the sampling site was to only consider the E. coli load grid cells that have 
runoff generated.  A runoff SELECT grid was estimated for each runoff event in which the cells 
with no runoff generated had a contributing E. coli load of zero.  The flow accumulation was 
calculated using the runoff SELECT grid as an input weight and the DEM.  The output of flow 
accumulation would then represent the amount of E. coli load that would flow through each cell 
considering the upslope cells.  The flow accumulation at a sampling site would then estimate the 
E. coli load reaching that site.   

 
Calculation of Observed Runoff Volume 
 The observed instantaneous stream flow taken during the time the E. coli grab sample 
was sampled was converted to a runoff volume.  The base flow was removed from the stream 
flow by subtracting the 100% exceedence flow.  Flow duration curves were developed for the 
sampling sites SH 123 and Haberle Road using SWAT simulated flow rates ranging from 1998 
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to 2009.  The 100% exceedence flow for the Haberle Road sampling site was determined as 1.89 
cfs and 1.0 cfs for the SH 123 site.   
 The stream flow was converted to a runoff volume by multiplying by the lag time 
calculated for each sampling site using the SCS lag equation based on natural watersheds 

 where L is the hydraulic length of the sampling site drainage area 
in feet, S is the average maximum soil water retention parameter calculated from the curve 
number grid for the sampling site drainage area, and Y is the average land slope of the sampling 
site drainage area in percentage.   

The SH 123 sampling site L parameter was determined by measuring the longest length 
for SWAT delineated stream channel to the drainage area outlet.  The stream length measuring 
78926 feet included the entire length of Alligator Creek and the length of Geronimo Creek from 
its confluence with Alligator Creek to the drainage area outlet.  Although the Haberle Road 
sampling site is located downstream of SH 123, the flow accumulation showed due to slope that 
the Haberle Road site had about 1/5 of the area contributing of 1033 pixels compared to the SH 
123 site’s 5035 pixels.  To remedy this difference, the hydraulic length for the Haberle Road 
sampling site was determined by measuring the longest stream length from the site determined 
with the flow accumulation grid which was 4738 feet.  The lag time for the SH 123 site was 7.18 
hours and 0.78 hours for the Haberle Road sampling site.   

 
Delivery Factor (D) 
 The delivery factor is back calculated from equation 1 using observed E. coli 
concentration data.  All factors influencing the processes affecting the runoff of the potential E. 
coli load into the creek are meant to be included in the delivery factor with the exception of 
runoff. Two separate delivery factors were calculated, one using the observed runoff volume 
converted from the observed stream flow.  The other delivery factor is calculated from the 
simulated runoff volume.   
 A delivery ratio was calculated for all data points both using the observed and simulated 
runoff volume for each site separately.  For each site, the average and the geomean was 
calculated for the separate delivery ratios.  This resulted in the calculation of eight different 
delivery ratios to be applied to the data.  For both sites, an observed and simulated delivery ratio 
was calculated with each type applying both an average and geomean.   
 
Calibration 

We obtained historical and routine stream flow and E. coli concentration sampling data 
ranging from 1996 to 2010 from the Guadalupe Brazos River Authority (GBRA).  The SH 123 
and Haberle Road sampling sites were both historical sites while the other 13 samplings sites in 
the watershed began sampling in September 2008.  84 Haberle Road samples were taken on a 
monthly basis beginning in September 2003 and ending in December 2010.  For the SH 123 
sampling site, monthly sampling began in October 1996 and ended in August 2003, but then 
resumed on September 2008 until August 2010.  Out of the 105 data points taken at the SH 123 
sampling site only 5 coincided with runoff precipitation. Only 12 data points out of the 84 for the 
Haberle Road site samples were taken when runoff precipitation occurred.  The model was 
calibrated for both the Haberle Road site and the SH 123 site separately.   
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Statistics 
The accuracy of the model was evaluated using the Nash-Sutcliffe efficiency (E), root 

mean square error (RMSE), and RMSE-observations standard deviation ratio (RSR). According 
to Nash and Sutcliffe (1970) the E value is an index of agreement or disagreement between 
observed and predicted values.  The E value evaluates how consistently the predicted values 
agree with the observed values by applying linear regression analysis (Nash and Sutcliffe, 1970).  
E is computed with the equation:  where Oi is 
observed values, Pi is predicted values, and  is the mean of the observed values (Nash and 
Sutcliffe, 1970).  The E value ranges from negative infinity to 1, where negative values are 
considered a biased model and values between 0 and +1 are considered an unbiased model 
(McCuen, et al., 2006).  Model efficiencies were classificed similar to Moriasi et al. (2007) and 
Parajuli et al. (2009) as very good (E = 0.75 – 1), good (E = 0.5 – 0.74), fair (E = 0.25 – 0.49), 
poor (E = 0 – 0.24) and unsatisfactory (E < 0.0).   

RMSE is an error index used in model evaluation and is valuable because the error is 
indicated in the units of the constituent of interest (Moriasi, et al., 2007).  Legates and McCabe 
(1999) recommend including at least one relative error measure (E or R2) and at lease one 
absolute error measure (RMSE or mean absolute error) for a complete assessment of model 
performance.  RSME values close to 0 indicate a perfect fit but values half the standard deviation 
are still considered low (Singh, et al., 2004).  The equation for RMSE is: 

 where Oi is observed values, Pi is predicted values, and n is the 
number of samples.   

RSR is a model evaluation statistic that standardizes RMSE with the observed data 
standard deviation (Moriasi, et al., 2007).  Moriasi et al. (2007) developed RSR to fill the need of 
an error index with additional information provided for using RSME with the standard deviation 
recommended by Legates and McCabe (1999).  The equation for RSR is: 

 where Oi is observed values, Pi is predicted 

values, and is the mean of observed values (Moriasi, et al., 2007).  The value of RSR ranges 
from 0, which is the optimal value and indicates a perfect model, to a large positive value 
(Moriasi, et al., 2007).  Model efficiences are classified by Moriasi et al. (2007) as very good 
(RSR = 0.00 – 0.50), good (RSR = 0.51 – 0.60), satisfactory (0.61 – 0.70), and unsatifactory 
(RSR > 0.70).   

Moriasi et al. (2007) states that the model evaluation guidelines for both E and RSR 
values given apply to a continuous, long-term simulation for a monthly time step.  The 
guidelines should be adjusted based on a multitude of factors including quality and quantity of 
measured data, single-event simulation, evalution time step, model calibration procedure, and 
project scope and magnitude (Moriasi, et al., 2007).  Moriasi et al. (2007) continues to say that 
when a complete measured time series does not exist, such as when only a few grab samples per 
year are available, that the data may not be sufficient for analysis using the reccomended 
statistics.   

 
Principal Findings 

The runoff volumes and the E. coli concentrations were simulated for both the Haberle 
Road and SH 123 sampling sites.   
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Runoff Volume 
 The model was able to predict the runoff volume at the Haberle Road sampling site outlet 
with good agreement and at the SH 123 sampling site outlet with very good agreement. For the 
Haberle Road sampling site, both the E and RSR values (Table 1) had a good performance rating.  
The RMSE value is considered low because it less than half of the observed standard deviation as 
shown in Table 1.  The SH 123 sampling site had a very good performance rating for both E and 
RSR values.  The RMSE value for the SH 123 sampling station was considered low as well.   
 
Table 1. Runoff volume model performance 

Sampling Site Statistic Value 

Haberle Road 

E 0.74 
RSR 0.51 

RMSE 984 
Observed Average 1329 

Observed Standard Deviation 2015 

SH 123 

E 0.84 
RSR 0.40 

RMSE 1494 
Observed Average 3764 

Observed Standard Deviation 4128 
 

For the Haberle Road sampling site, simulated runoff volumes were mostly 
underestimated with the exception of one point. This point may have been overestimated because 
it was taken during the driest season in a year (in August) whereas; the other points were taken in 
wetter months.  The dataset does not include any data points taken in the fall months (October 
and November); September is not considered a fall month because the weather is still similar to 
the summer weather for this region.  The dataset also has a gap for the 2009 year where no data 
points collected had contributing runoff occurring at the same time,  

The runoff volumes for the SH 123 site were all underestimated for the five data points.  
The data was not taken continuously and there is therefore a gap between the years 2002 and 
2010 with no data taken in 2001, where no data was collected where runoff occurred at the same 
time.  The SH 123 site data points only include the fall and winter seasons with only one data 
point taken in the spring.  This may skew the data some because the points do not include the 
summer season which is typically the driest season for the region.   

 
E. coli Concentrations 

For both the Haberle Road and SH 123 sampling sites, the model predicted E. coli 
concentrations with unsatisfactory agreement (Table 2) for all four methods of delivery factor 
calibration for both E and RSR values. The RMSE values for both sites using all four methods, 
were higher than the observed standard deviations and observed averages (Table 2) indicating an 
unsatisfactory agreement between the observed and predicted E. coli concentrations.  The 
delivery factor estimated from the geomean of simulated runoff volumes performed the best for 
both the Haberle Road and SH 123 sampling sites.  The Haberle Road site consistently 
performed better than the SH 123 site with the E and RSR values of -0.67 and 1 (Table 2) for the 
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Haberle Road site and value of -101.21 and 10.11(Table 2) for the SH 123 site, respectively, 
estimated using the geomean simulated delivery factor for both.  The delivery factor estimated 
using simulated runoff volumes versus observed runoff volumes was able to better predict the E. 
coli concentrations because simulated runoff volumes were consistently under predicted for both 
the Haberle Road and SH 123 sampling sites.  The runoff volume was meant to dilute the E. coli 
load to an E. coli concentration entering the stream.   

 
Table 2. E. coli concentration model performance. 

Sampling 
Site Statistic 

Simulated Delivery 
Factor 

Observed Delivery 
Factor 

    Geomean Average Geomean Average 

Haberle 
Road 

E -0.67 -72 -1155 -54189 
RSR 1 9 34 233 

RMSE 21 138 646 4421 
Observed Average 12 12 12 12 
Observed Standard 

Deviation 20 20 20 20 

SH 123 

E -101.21 -408.58 -54143 -84609620 
RSR 10.11 20.24 233 9198 

RMSE 8.00 16.01 184 7275 
Observed Average 1.79 1.79 1.79 1.79 
Observed Standard 

Deviation 0.88 0.88 0.88 0.88 
 

The observed E. coli concentrations had values ranging from 0.46 to 57 CFU/mL.  The E. 
coli concentrations predicted using the delivery factor estimated from the geomean of the 
simulated runoff volumes was the method that had the closest range of concentrations (0.54 to 
42.32 CFU/mL) to the observed concentration range.  The method predicting E. coli 
concentrations using the delivery factor estimated from the average of the observed runoff 
volumes performed the poorest and grossly over predicted with a range of concentrations from 
187 to 14739 CFU/mL.  The E. coli concentrations predicted using the delivery factor estimated 
from the average of the simulated runoff volumes had a closer range of 5 to 445 CFU/mL than 
the concentrations predicted using the geomean of the observed runoff volumes with a range of 
27 to 2162 CFU/mL.   
 The prediction of E. coli concentrations for the SH 123 sampling site was poorer than the 
prediction for the Haberle Road sampling site.  The SH 123 sampling site followed similar trends 
as the Haberle Road sampling site.  As with the Haberle Road sampling site, for the SH 123 
sampling site, the delivery factors computed using the simulated runoff volumes performed 
better than the delivery factors computed using the observed runoff volumes.  The delivery 
factors computed using the geomean instead of the average of the respective runoff volumes 
performed better as well for the SH 123 sampling site.  The range for the observed E. coli 
concentrations was from 1.12 to 3.2 CFU/mL.  The E. coli concentrations predicted using the 
delivery factor estimated using the geomean of simulated runoff volumes had the closest range 
from 0.26 to 19 CFU/mL of predicted concentrations to the observed concentrations.  Since the 
SH 123 site runoff volume was predicted more accurately than the Haberle Road site runoff 
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volume, the E. coli concentration data should be better predicted as well.  Since this is not the 
case, other factors influencing the transport of E. coli bacteria are not accounted for in the model. 
 
Significance 

In ungauged watersheds, historical bacteria data is sparsely available.  It is expensive to 
collect more monitoring data.  The USEPA estimates a cost of approximately seventeen million 
dollars a year for water quality monitoring to support the development of all national TMDL 
projects (USEPA, 2001).  Current bacteria models require extensive monitoring data within the 
watershed for calibration or they cannot predict actual E. coli concentrations in the water body.  
A simple model that predicts actual bacteria concentrations in a water body is needed in order to 
develop TMDLs or WWPs within the state of Texas.   
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