Committee chair: Paul DeLaune P.O. Box 1658 11708 Highway 70 Vernon, TX 76384 940.552.9941 x207

Description of research project:

My masters thesis project will include a nitrate crediting study on cotton under subsurface drip, furrow, and pivot irrigation systems. The study looks at the effect of accounting for irrigation water nitrates in fertilizer applications on nitrogen uptake and partitioning. Contamination of groundwater by nitrates is particularly a problem in the Texas Rolling Plains where the shallow Seymour aquifer is coupled with the region's land use being predominately agricultural production (around 70%). The Seymour aquifer has the highest average nitrate concentrations of all major aquifers in Texas. A study by the Texas Department of Water Resources found that, among the wells distributed throughout the aquifer that have been tested, around 75% exceed the EPA's Drinking Water Standard of 10 ppm NO₃. Crediting irrigation water nitrates towards a crop and basing fertilizer applications around soil test N means that less fertilizer needs to be applied, thereby reducing the amount of nitrogen that has the potential to leach. Irrigation water at our research station in Chillicothe, TX contains about 20 ppm nitrates throughout the summer, meaning that 55 lbs NO₃ is available for every acre-foot of water applied. Predicting that 12 inches of irrigation water will be applied to pivot-irrigated cotton this summer, where three bales per acre are expected, fertilizer N application was reduced by 37%. For each of pivot, drip, and furrow systems, treatments include a control with only irrigation N and four fertilizer application rates based on soil test N & P: N application only, N and P application, N application with crediting for irrigation water N, and N and P application with crediting for irrigation water N. In 2010, there was no significant difference of cotton yields between treatments crediting irrigation nitrates and those not crediting for nitrates. Crediting irrigation water nitrates is important not only for a potential reduction of nitrates leaching to the groundwater but also, in a climate of ever-higher fertilizer prices, substantial cost savings for the farmer.

Undergraduate GPR GRE Scores

Brazosport College – Dual Credit – 2006 University of Houston – 2006 to 2008			
BIO	1	BIOLOGY 100 LEVEL TRANSFER	
MTH	2	MATH 200 LEVEL TRANSFER	
MTH	233	CALCULUS I	
MTH	234	CALCULUS II	
PHY	131	MECHANICS & HEAT	
PHY	131L	MECHANICS & HEAT LAB	

Relevant Coursework:

CHE	133	GENERAL CHEMISTRY I		
PHY	1	PHYSICS 100 LEVEL TRANSFER		
BIO	313	GENERAL ECOLOGY		
BIO	370	EVOLUTION		
Stephen F. Austin State University – 2009				
AGN	110	CROP SCIENCE		
AGN	331	SOIL SCIENCE		
AGR	431	AG INTERNSHIP		
CHE	133L	GENERAL CHEMISTRY I LAB		
FOR	152	INTRO WILDLFE MANAGEMENT		
HRT	212	FRUIT AND VEGETABLE PRODUCTION		
BIO	225	LOCAL FLORA		
HRT	325	DESIGN APPLIC. SOFTWARE I CAD		
AEC	451	FARM MANAGEMENT		
AGD	361	AG DEVELOPMENT		
AGN	367	WEED SCIENCE		
AGN	434	SOIL FERTILITY		
ANS	333	ANIMAL NUTRITION		
FOR	349	PRIN FOREST SOILS		
PLS	317	APPLIED AGRICULTURE DATA APPL		
PLS	420	AGRICULTURAL WASTE MANAGEMENT		
		GPA: Earned hours:		

Use of funds resulting from TWRI Mills Scholarship:

I intend on using funds from the TWRI Mills Scholarship to pay tuition for Fall 2011 or Spring 2012.

Intended career path:

Beginning Fall 2011, I will at be Texas A&M University, earning a degree in either soil science or agronomy with a strong emphasis on soils. I am very interested in environmental soil science and sustainable agriculture. My studies will enable me to develop further interests and understanding, and to start a career path, in these areas.