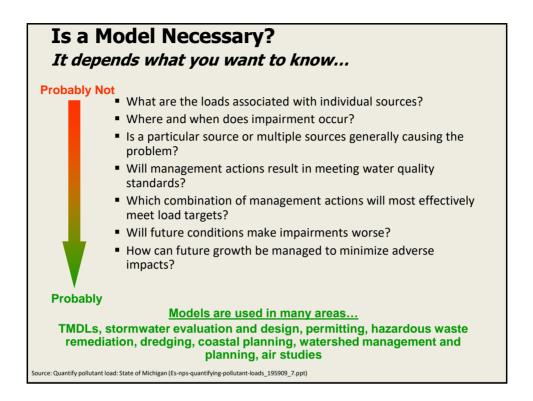
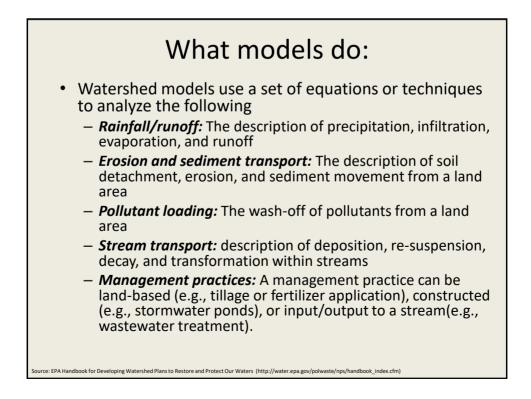
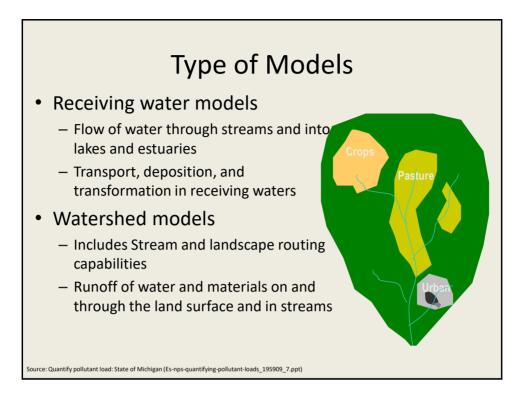
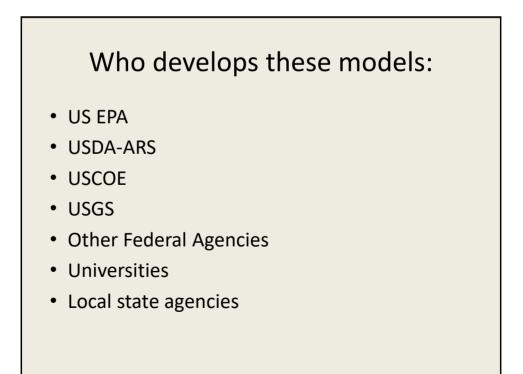
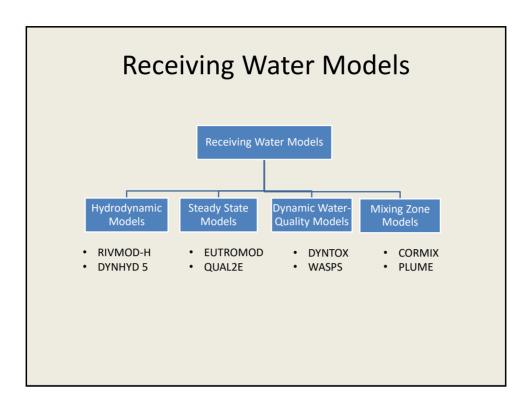

Why is Pollutant Load Estimation Necessary?

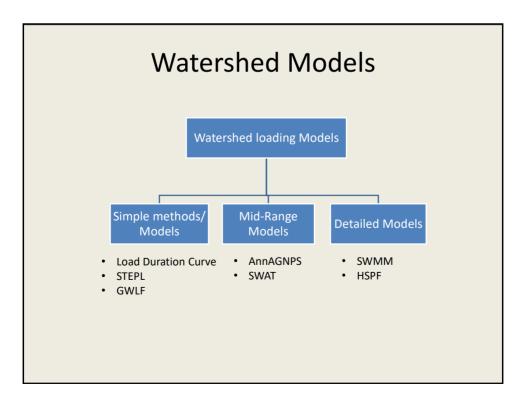

- Identify relative magnitude of contributions from different sources
- Determine whether locations of sources are critical
- Evaluate timing of source loading
- Target future management efforts
 - Plan restoration strategies
 - Project future loads under changing conditions
- Develop a mechanism for quantifying potential improvement

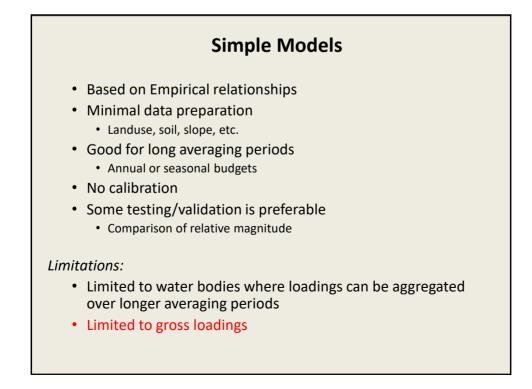

Source: Quantify pollutant load: State of Michigan (Es-nps-quantifying-pollutant-loads_195909_7.ppt)

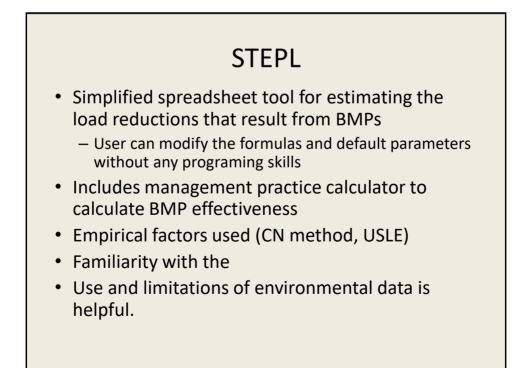


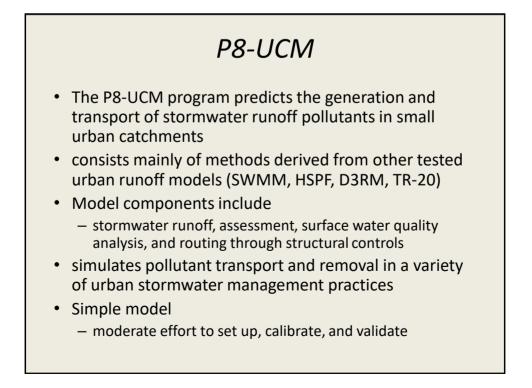






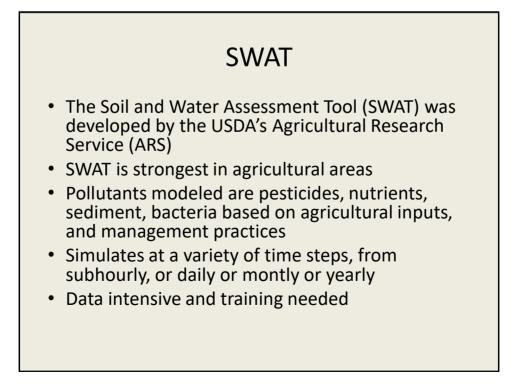



Element	Generalized	Mid-level	Detailed
Land			
Land use	Category (Agriculture)	Subcategory (Cropland)	Specific (Corn, ridge-tilled)
Slope	N/A	Average for area	Average for area
Soil moisture	N/A	Antecedent moisture condition (3 levels)	Calculated
Hydrology	Percent runoff	Curve number	Infiltration equations
Pollutants	Single	Multiple	Chemical and biological interactio between pollutants
Load	lb/ac/year	lb/day; daily average concentration	lb/hr; hourly average concentratio
Management Pr	actices		
Management Practices	Percent removal	Percent removal and estimated volume captured	Hydrology Deposition/settling First order decay and transformati
Streams/Rivers			·
Hydrology	Single flow, steady state	Single flow, steady state	Continuous or variable flow
Water quality	Regression, simple relationships	Eutrophication cycle	Eutrophication cycle, carbon/ nutrient/BOD processes
Toxic substances	Regression, simple relationships	Settling, 1st-order decay	Transformation, biodegradation, other processes


- Easy-to-understand visual display of water quality
- Observed load values located above the Load Duration Curve indicate allowable daily loads have been exceeded
- Clustering of data may help identify when problems
- Help identify seasonal trends
- Help develop water quality goals

GWLF

- The Generalized Watershed Loading Function (GWLF) model simulates
 - runoff and sediment delivery using the SCS curve number equation (CNE) and the USLE, combined with average nutrient concentration based on land use
- Simple Model
- Less experience needed
- In stream process not considered



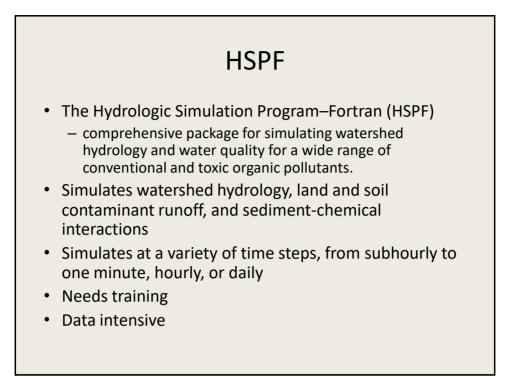
Mid-range Models

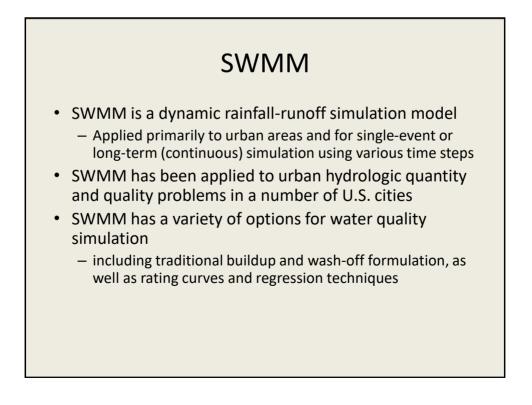
- More detailed data preparation
 - Detailed landuse categorization
 - Meteorological data
- · Good for seasonal/event issues
- Minimal or no calibration
- Testing and validation preferable
 - Application objectives
 - Storm events, daily loads

Limitations:

- Limited pollutants simulated
- Limited in-stream simulation & comparison w/standards
- Daily/monthly load summaries

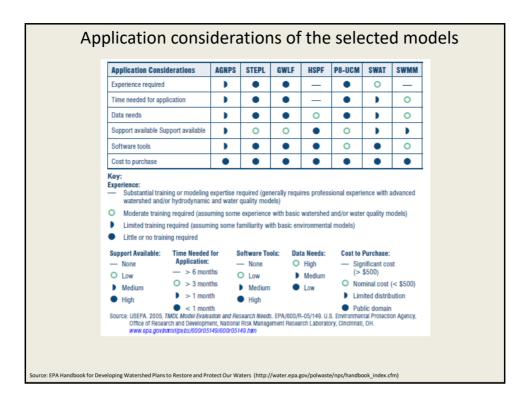
AGNPS

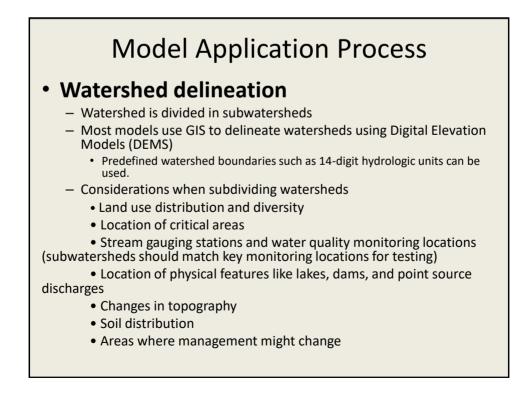

- Developed by USDA's Agricultural Research Service


 To evaluate the effect of management decisions on a watershed system.
- Continuous-simulation, watershed scale model
- Provides spatially explicit results
- Special components included to

 Nutrients, concentrated sediment gullies and irrigation
- Outputs expressed on event basis for selected stream reaches from land or reach components over the simulation period
- Model can be used to evaluate
 - effect of management practices such as agricultural practices, ponds, grassed waterways, irrigation, tile drainage, vegetative filter strips, and riparian buffers

Detailed Models


- · Accommodate more detailed data input
- Short time steps and finer configuration
 - Complex algorithms need state/kinetic variables
 - · Ability to evaluate various averaging periods and frequencies
- · Calibration is required
- Addresses a wide range of water and water quality problems
- · Include both landscape and receiving water simulation
- Limitations:
 - More training and experience needed
 - Time-consuming (need GIS help, output analysis tools, etc.)



Parameter/Endpoint	AGNPS	STEPL	GWLF ^a	HSPF	P8-UCM	SWAT	SWMM
Total phosphorus (TP) load		0		٠	٠		٠
TP concentration		_		٠	٠	•	٠
Total nitrogen (TN) load		0		٠	٠	•	٠
TN concentration		-		٠	٠	•	٠
Nitrate concentration	-	-	-	٠	-	•	٠
Ammonia concentration	-	-	-	٠	-	•	٠
TN:TP mass ratio	-	-		٠	-	•	٠
Dissolved oxygen		_	_	•	-	•	٠
Chlorophyll a	-	_	_	•	-	•	_
Algal density (mg/m²)	-	-	-	-	-	_	—
Net total suspended solids load	-	0	-	٠	٠	_	٠
Total suspended solids concentration	•	-	-	٠	•		٠
Sediment concentration		-		٠	٠	•	٠
Sediment load		0		٠	-	•	٠
Metals concentrations	-	-	-	٠	-		٠
Conductivity	-	-	-	٠	-	_	-
Pesticide concentrations		-	-	٠	-		—
Herbicide concentrations		-	-	٠	-	•	-
Toxics concentrations	-	-	-	٠	-	-	-
Pathogen count (E. coli, fecal coliform bacteria)	-	-	-	•	-	•	•
Temperature	_	_	-	٠	-	•	—

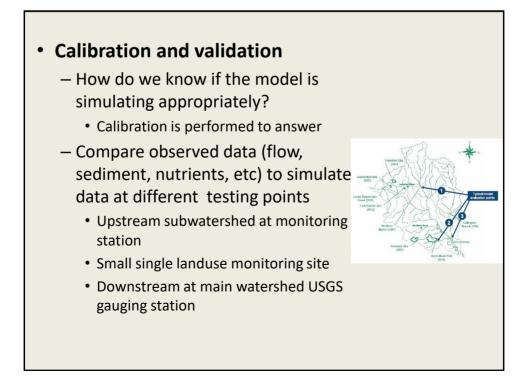
and and Water Feature	AGNPS	STEPL	GWLF	HSPF	P8-UCM	SWAT	SWMM	
General Land and Water Features								
Jrban	-	0						
Rural	•	0		٠	0	٠		
Agriculture	•	0	•	•	0	•	0	
orest	_	0		•	0	•	0	
River	_	_	0	•	0	0	0	
ake	_	_	_		_	0	0	•
Reservoir/impoundment	_	_	_		•	0	Ň	
stuary (tidal)	-	-	-	-	-	_	-	
Coastal (tidal/shoreline)	-	-	-	-	-	_	_	
Detailed Land Features								
Air deposition	-	-	-	0	-	-	-	·
Vetlands	-	-	-		0	0	0	
and-to-land simulation	0	-	-	0	-	_	_	
lydrologic modification	-	-	-		-	_		
BMP siting/placement	•	-	-	0		_		
Irban Land Management								·
Street sweeping and vacuuming	-	-	0	-		0		
lutrient control practices (fertilizer, pet waste nanagement)	•	-	-	0	0	0	0	
Stormwater structures (manhole, splitter)	-	-	-	-	0	-		
Detention/retention ponds		-	-	0		0		
Constructed wetland processes	-	-	-	-	0	0	0	
/egetative practices		-	0	0	0	0	0	
nfiltration practices	—	-	-	0	0	-	-	
Rural Land Management								
lutrient control practices (fertilizer, manure nanagement)	•	0	0	٠	-	٠	0	
Agricultural conservation practices (contouring, erracing, row cropping)	•	0	0	٠	-	٠	0	
rrigation practices/tile drains	0	-	-	-	-	Key:	- Not su	upported
Ponds		-	-					Simplified representation of fe

Watershed	Location	Watershed Size (ml²)	Number of Subwatersheds	Average Subwatershed Size (ml²)	
Mobile River Basin	AL/GA/MS/TN	43,605	152	286.88	
French Gulch Creek	AZ	16	26	0.62	
Boulder Creek	AZ	138	9	15.33	
Clear Lake Watershed	CA	441	49	9.00	
San Gabriel River	CA	689	139	4.96	
San Jacinto River	CA	770	32	24.06	
Los Angeles River	CA	834	35	23.83	
Sacramento River	CA	9,147	249	36.73	
Lake Tahoe Watershed	CA/NV	314	184	1.71	
Christina River	DE/MD/PA	564	70	8.06	
Tug Fork River	KY/VA/WV	1,500	455	3.30	
Upper Patuxent River	MD	130	50	2.60	
Lower Tongue River	MT	3,609	30	120.30	
Lake Helena Watershed	MT	616	49	12.57	
Wissahickon Creek	PA	64	5	12.80	
Tyger River	SC	750	75	10.00	
Salt River	USVI	5	13	0.38	
Tygart Valley River	WV	1,362	1,007	1.35	
West Fork River	WV	880	645	1.36	

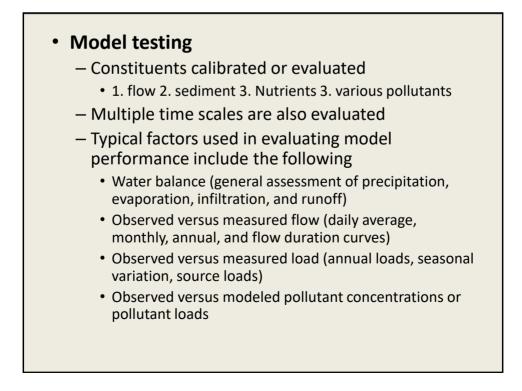
Landuse/soil assignment

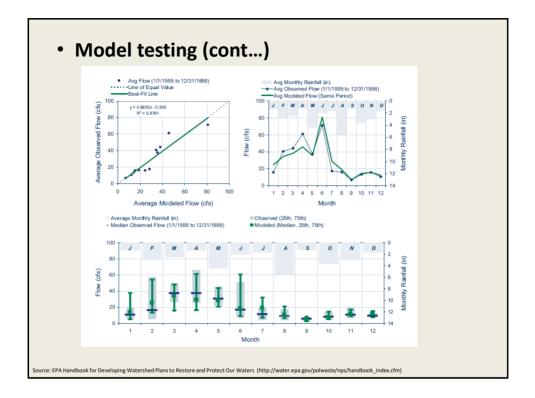
- Land use/soil information is typically provided as a GIS coverage or map
 - with many individual codes that describe detailed land use types
- Factors to consider in deciding on land use/soil grouping include the following:
 - Dominant land use/soil types
 - Land uses subject to change or conversion
 - Land use types where management changes are expected
 - · Spatial diversity of soil within the watershed
 - Availability of information on individual land use/soil types
- Too many categories is difficult for model to process, too little results in oversimplification
 - Decision depends on local conditions and management concerns being evaluated

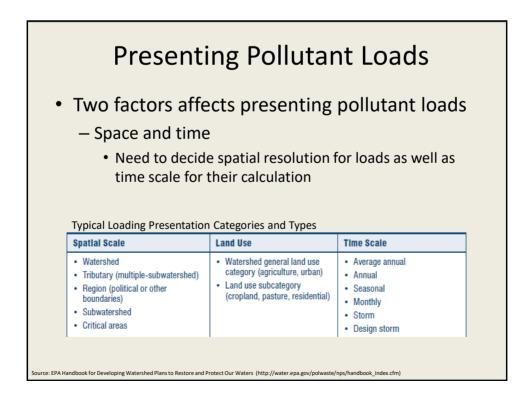
Weather

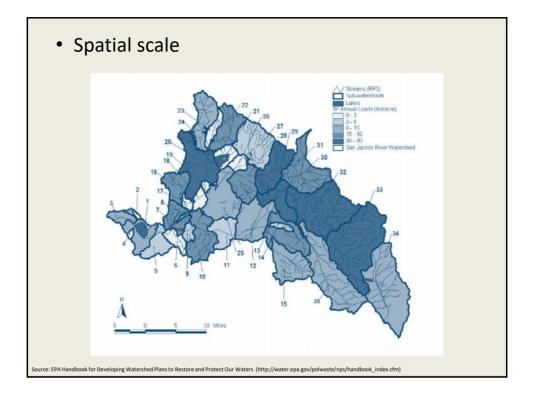

- Models need precipitation and Temperature for time period of interest
 - Relative humidity, Windspeed, Solar radiation can also be given
- Most models accept daily data
 - Hourly can also be given for more detailed analysis

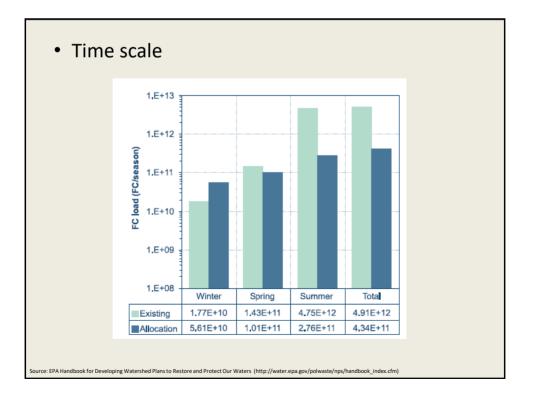
Management Operations


- Agriculture
 - Planting, harvesting, pesticide and feltilizer application, irrigation
- Urban


Best management practices (BMPs)


- Can simulate already installed and future BMPs in models by altering parameters
 - Eg. Reduce curve number by 6 units; P factor in USLE to 0.2




• Calibration and Validation (cont)											
 Adjusting or estimating parameters through a calibration process 											
	 parameters are adjusted within reasonable ranges until the best fit with the observed data is determined 										
Typical Calibration Options for Selected Example Models											
Flow Calibration Pollutant Calibration											
	AGNPS	Limited CN	Nutrient concentrations in water and sediment								
	STEPL	Limited/CN only	Loading rate								
	GWLF	Ground water recession	Nutrient concentrations in water (runoff, ground water) and sediment								
	HSPF	Multiple, infiltration, soil storage, ground water	Pollutant buildup and wash-off, instream transport/decay								
	P8-UCM	Limited/CN only	Loading rate or more detailed buildup and wash- off of dust and pollutants								
	SWAT	Ground water	Nutrient concentrations in water and sediment								
	SWMM Multiple, infiltration, soil storage, ground water Pollutant buildup and wash-off, instream transport/decay										
Source: EPA Handbook for Developing Watershed Plans to Restore and Protect Our Waters (http://water.epa.gov/polwaste/nps/handbook_index.cfm)											

